1
|
Hoppes R, Oostvogels R, Luimstra JJ, Wals K, Toebes M, Bies L, Ekkebus R, Rijal P, Celie PHN, Huang JH, Emmelot ME, Spaapen RM, Lokhorst H, Schumacher TNM, Mutis T, Rodenko B, Ovaa H. Altered peptide ligands revisited: vaccine design through chemically modified HLA-A2-restricted T cell epitopes. THE JOURNAL OF IMMUNOLOGY 2014; 193:4803-13. [PMID: 25311806 DOI: 10.4049/jimmunol.1400800] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Virus or tumor Ag-derived peptides that are displayed by MHC class I molecules are attractive starting points for vaccine development because they induce strong protective and therapeutic cytotoxic T cell responses. In thus study, we show that the MHC binding and consequent T cell reactivity against several HLA-A*02 restricted epitopes can be further improved through the incorporation of nonproteogenic amino acids at primary and secondary anchor positions. We screened more than 90 nonproteogenic, synthetic amino acids through a range of epitopes and tested more than 3000 chemically enhanced altered peptide ligands (CPLs) for binding affinity to HLA-A*0201. With this approach, we designed CPLs of viral epitopes, of melanoma-associated Ags, and of the minor histocompatibility Ag UTA2-1, which is currently being evaluated for its antileukemic activity in clinical dendritic cell vaccination trials. The crystal structure of one of the CPLs in complex with HLA-A*0201 revealed the molecular interactions likely responsible for improved binding. The best CPLs displayed enhanced affinity for MHC, increasing MHC stability and prolonging recognition by Ag-specific T cells and, most importantly, they induced accelerated expansion of antitumor T cell frequencies in vitro and in vivo as compared with the native epitope. Eventually, we were able to construct a toolbox of preferred nonproteogenic residues with which practically any given HLA-A*02 restricted epitope can be readily optimized. These CPLs could improve the therapeutic outcome of vaccination strategies or can be used for ex vivo enrichment and faster expansion of Ag-specific T cells for transfer into patients.
Collapse
Affiliation(s)
- Rieuwert Hoppes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rimke Oostvogels
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands Department of Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jolien J Luimstra
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Kim Wals
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Mireille Toebes
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Laura Bies
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Reggy Ekkebus
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Pramila Rijal
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Patrick H N Celie
- Division of Biochemistry, The Netherlands Cancer Institute Protein Facility, 1066 CX Amsterdam, the Netherlands; and
| | - Julie H Huang
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maarten E Emmelot
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Robbert M Spaapen
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Henk Lokhorst
- Department of Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ton N M Schumacher
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Tuna Mutis
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Boris Rodenko
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|