1
|
Ysebaert L, Ederhy S, Leblond V, Malartre S, Portalier A, Sibaud V, Tomowiak C, Zerbit J. Expert Opinion on Managing Adverse Reactions Associated With Acalabrutinib Therapy: A Delphi Consensus From France. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:e173-e181. [PMID: 39547859 DOI: 10.1016/j.clml.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Acalabrutinib, a second-generation Bruton's tyrosine kinase inhibitor (BTKi), offers an improved safety profile compared to first-generation inhibitors like ibrutinib. While BTKi guidelines exist, practical differences between BTKis-such as drug interactions and tolerance-are not fully addressed. Therefore, a consensus on acalabrutinib use would benefit the medical community. This 2-round Delphi study involved hematologists, pharmacists, cardiologists, dermatologists, and nurse practitioners throughout France to establish consensus-based practical guidance on managing adverse events (AEs) associated with acalabrutinib in chronic lymphocytic leukemia. Key findings highlighted the need for a hospital pharmacist to analyze drug interactions before starting acalabrutinib. Additionally, the experts' opinion was to avoid the concomitant use of acalabrutinib with strong CYP3A inhibitors due to an increased risk of toxicity and with strong CYP3A inducers due to potential efficacy concerns. Importantly, our study did not find contraindications for acalabrutinib in patients with current or previous atrial fibrillation. The panel emphasized the importance of measuring blood pressure at every clinical visit for patients treated with acalabrutinib and opposed the initiation of acalabrutinib in patients on both aspirin and clopidogrel. For invasive dermatological or dental procedures, acalabrutinib should be discontinued 4 days prior and resumed 48 hours postprocedure in the absence of bleeding. Additionally, patients should be informed about the risk of headaches, particularly during the first month of treatment, and paracetamol use in combination with caffeine is recommended for managing grade ≥ 2 headaches under acalabrutinib treatment. This Delphi study underscored the effectiveness of a collaborative process in enhancing the management of acalabrutinib-associated AEs.
Collapse
Affiliation(s)
- Loïc Ysebaert
- Department of Hematology, Cancer University Institute of Toulouse Oncopole, Toulouse, France.
| | - Stéphane Ederhy
- Department of Cardiology, Saint-Antoine Hospital, Paris, France
| | - Véronique Leblond
- Department of Hematology, Sorbonne University, Pitié-Salpêtrière Charles Foix University Hospitals, Paris, France
| | | | - Anaïs Portalier
- Department of Hematology, Sorbonne University, Pitié-Salpêtrière Charles Foix University Hospitals, Paris, France
| | - Vincent Sibaud
- Department of Oncodermatology, Cancer University Institute of Toulouse Oncopole, Toulouse, France
| | - Cécile Tomowiak
- Department of Hematology and Cellular Therapy, Poitiers University Hospital, Poitiers, France
| | - Jérémie Zerbit
- Department of Pharmacy, Paris Public Hospital at Home (HAD AP-HP), University Hospitals of Paris, Paris, France
| |
Collapse
|
2
|
Jiang D, Song Z, Ma Y, Zhang X, Bing H, Xiong X, Hu Y, Dong F, Zhao R. Development, validation, and clinical application of LC-MS/MS method for simultaneous determination of ibrutinib, zanubrutinib, orelabrutinib, acalabrutinib, and their active metabolites in patients with B-cell lymphoma. Anal Bioanal Chem 2025; 417:821-834. [PMID: 39702674 DOI: 10.1007/s00216-024-05701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Bruton's tyrosine kinase inhibitors (BTKis) exhibit significant interindividual pharmacokinetics, making therapeutic drug monitoring (TDM) a promising approach for personalized therapy. However, simultaneous quantification of multiple BTKis poses technical challenges. A unified protocol for BTKis detection would be clinically desirable. Herein, we developed and validated a novel LC-MS/MS method for the simultaneous analysis of four BTKis including ibrutinib (IBR), zanubrutinib (ZAN), orelabrutinib (ORE), and acalabrutinib (ACB) and active metabolite of IBR and ACB (DIH and ACBM, respectively) in human plasma. The samples were prepared by liquid-liquid extraction using tert-butyl methyl ether. Ibrutinb-d4 (IS) was used as an internal standard. Chromatographic separation was obtained on an XBridge C18 column and connected to an LC-30AD system coupled to an API 4000+ mass spectrometer. The mobile phase comprised 10 mM ammonium acetate containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. The optimized multiple reaction monitoring transitions of m/z 441.4 → 138.3, 475.4 → 304.2, 472.5 → 455.5, 428.3 → 411.5, 466.1 → 372.2, 482.2 → 388.4, and 445.5 → 142.5 were selected to inspect IBR, DIH, ZAN, ORE, ACB, ACBM, and IS, respectively. The method exhibited linearity from 1 to 1000 ng/mL (r > 0.99) for all analytes, with intra-day and inter-day precision of 1.8 to 9.7% and accuracy below 15%. Recovery ranged from 90.4 to 113.6%, and matrix effect varied from 89.3 to 111.0%. All compounds demonstrated stability under relevant conditions. Application of the method to 57 blood samples from 18 patients demonstrated high interpatient variability, with ORE plasma concentrations ranging from 25.6 to 89.9%. The validated LC-MS/MS method provides a feasible, specific, and rapid approach for quantification of BTKis in clinical settings. Simultaneous determination of four BTKis and their metabolites in a single extraction process and chromatographic run reduces analysis time, cost, and resources. The observed variability among individuals highlights the value of TDM for personalized treatment.
Collapse
Affiliation(s)
- Dan Jiang
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zaiwei Song
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
| | - Yi Ma
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
| | - Xu Zhang
- Department of Hematology, Peking University Third Hospital, Beijing, 100191, China
| | - Hao Bing
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xin Xiong
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
| | - Yang Hu
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fei Dong
- Department of Hematology, Peking University Third Hospital, Beijing, 100191, China.
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Beavers CJ, Ferrari AM. Cardio-oncology Drug Interactions: A Primer for Clinicians on Select Cardiotoxic Oncologic Therapies. Cardiol Clin 2025; 43:169-194. [PMID: 39551557 DOI: 10.1016/j.ccl.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cardio-oncology is an emerging multidisciplinary field intended to mitigate and manage cardiovascular side effects and risks associated with cancer therapies. Clinician awareness of drug interaction management among cancer treatments, cardiovascular medications, and supportive care agents is important for optimizing efficacy and safety. Historically, chemotherapies have been associated with pharmacodynamic interactions with few, but important, pharmacokinetic interactions. The advent of oral targeted inhibitors has introduced more complex pharmacokinetic interactions, especially via cytochrome P450 pathways. Given the accelerated development of oncology therapies, clinicians need to be familiar with reviewing multiple sources for interaction information as well as adjusting and monitoring regimens when contending with drug interaction challenges.
Collapse
Affiliation(s)
- Craig J Beavers
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, 789 South Limestone, Lexington, KY 40508, USA. https://twitter.com/beaverspharmd
| | - Alana M Ferrari
- Department of Pharmacy, University of Virginia, 1215 Lee Street, Charlottesville, VA 22903, USA.
| |
Collapse
|
4
|
Xu C, Bulusu KC, Pan H, Elemento O. DDI-GPT: Explainable Prediction of Drug-Drug Interactions using Large Language Models enhanced with Knowledge Graphs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627266. [PMID: 39713430 PMCID: PMC11661079 DOI: 10.1101/2024.12.06.627266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Identifying potential drug-drug interactions (DDIs) before clinical use is essential for patient safety yet remains a significant challenge in drug development. We presented DDI-GPT, a deep learning framework that predicts DDIs by combining knowledge graphs (KGs) and pre-trained large language models (LLMs), enabling early detection of potential drug interactions. We demonstrated that DDI-GPT outperforms current state-of-the-art methods by capturing contextual dependencies between biomedical entities to infer potential DDIs. Through feature attribution methods, we show that our explainable deep learning (DL) models enhance the quality of explanations on the pathways and interactome networks. Using TwoSIDES as our benchmark dataset, DDI-GPT achieved the best performance of 0.964 in AUROC compared with existing DL methods. We also applied DDI-GPT to perform zero-shot prediction on 9,480 DDI records, encompassing 442 distinct drugs from the FDA Adverse Event Reporting System. DDI-GPT can attain a high accuracy of in 0.84 AUROC, with an improvement of 14% compared to the best previously published method. We explored model interpretations on predicted DDIs involving Bruton's tyrosine kinase (BTK) inhibitors and uncovered CYP3A-enriched signals underlying the contaminant use of BTK inhibitors with other drugs leading to toxicity. Altogether, DDI-GPT, implemented as both a web server platform and a software package, identifies DDI events and offers a deep learning tool for drug safety use with expandable features.
Collapse
|
5
|
Galitzia A, Maccaferri M, Mauro FR, Murru R, Marasca R. Chronic Lymphocytic Leukemia: Management of Adverse Events in the Era of Targeted Agents. Cancers (Basel) 2024; 16:1996. [PMID: 38893115 PMCID: PMC11171383 DOI: 10.3390/cancers16111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The treatment landscape for CLL has undergone a profound transformation with the advent of targeted agents (TAs) like Bruton's Tyrosine Kinase inhibitors (BTKis) and BCL-2 inhibitors (BCL-2is). These agents target crucial cellular pathways in CLL, offering superior efficacy over traditional chemo-immunotherapy, which has led to improved progression-free and overall survival rates. This advancement promises enhanced disease control and potentially normal life expectancy for many patients. However, the journey is not without challenges, as these TAs are associated with a range of adverse events (AEs) that can impact treatment efficacy and patient quality of life. This review focuses on detailing the various AEs related to TA management in CLL, evaluating their frequency and clinical impact. The aim is to present a comprehensive guide to the effective management of these AEs, ensuring optimal tolerability and efficacy of TAs. By reviewing the existing literature and consolidating findings, we provide insights into AE management, which is crucial for maximizing patient outcomes in CLL therapy.
Collapse
Affiliation(s)
- Andrea Galitzia
- Hematology and Stem Cell Transplantation Unit, Ospedale San Francesco, 08100 Nuoro, Italy;
| | - Monica Maccaferri
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41125 Modena, Italy; (M.M.); (R.M.)
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy;
| | - Roberta Murru
- Hematology and Stem Cell Transplantation Unit, Ospedale Oncologico A. Businco, ARNAS G. Brotzu, 09134 Cagliari, Italy
| | - Roberto Marasca
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41125 Modena, Italy; (M.M.); (R.M.)
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
6
|
Djebli N, Parrott N, Jaminion F, O'Jeanson A, Guerini E, Carlile D. Evaluation of the potential impact on pharmacokinetics of various cytochrome P450 substrates of increasing IL-6 levels following administration of the T-cell bispecific engager glofitamab. CPT Pharmacometrics Syst Pharmacol 2024; 13:396-409. [PMID: 38044486 PMCID: PMC10941566 DOI: 10.1002/psp4.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
Glofitamab is a novel T cell bispecific antibody developed for treatment of relapsed-refractory diffuse large B cell lymphoma and other non-Hodgkin's lymphoma indications. By simultaneously binding human CD20-expressing tumor cells and CD3 on T cells, glofitamab induces tumor cell lysis, in addition to T-cell activation, proliferation, and cytokine release. Here, we describe physiologically-based pharmacokinetic (PBPK) modeling performed to assess the impact of glofitamab-associated transient increases in interleukin 6 (IL-6) on the pharmacokinetics of several cytochrome P450 (CYP) substrates. By refinement of a previously described IL-6 model and inclusion of in vitro CYP suppression data for CYP3A4, CYP1A2, and 2C9, a PBPK model was established in Simcyp to capture the induced IL-6 levels seen when glofitamab is administered at the intended dose and dosing regimen. Following model qualification, the PBPK model was used to predict the potential impact of CYP suppression on exposures of various CYP probe substrates. PBPK analysis predicted that, in the worst-case, the transient elevation of IL-6 would increase exposures of CYP3A4, CYP2C9, and CYP1A2 substrates by less than or equal to twofold. Increases for CYP3A4, CYP2C9, and CYP1A2 substrates were projected to be 1.75, 1.19, and 1.09-fold following the first administration and 2.08, 1.28, and 1.49-fold following repeated administrations. It is recommended that there are no restrictions on concomitant treatment with any other drugs. Consideration may be given for potential drug-drug interaction during the first cycle in patients who are receiving concomitant CYP substrates with a narrow therapeutic index via monitoring for toxicity or for drug concentrations.
Collapse
Affiliation(s)
- Nassim Djebli
- Roche Pharmaceutical Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
- Luzsana Biotechnology, Clinical Pharmacology and Early DevelopmentBaselSwitzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Felix Jaminion
- Roche Pharmaceutical Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | | | - Elena Guerini
- Roche Pharmaceutical Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - David Carlile
- Roche Pharmaceutical Research and Early Development, Roche Innovation CenterWelwynUK
| |
Collapse
|
7
|
Yang X, Grimstein M, Pressly M, Fletcher EP, Shord S, Leong R. Utility of Physiologically Based Pharmacokinetic Modeling to Investigate the Impact of Physiological Changes of Pregnancy and Cancer on Oncology Drug Pharmacokinetics. Pharmaceutics 2023; 15:2727. [PMID: 38140068 PMCID: PMC10748010 DOI: 10.3390/pharmaceutics15122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The treatment of cancer during pregnancy remains challenging with knowledge gaps in drug dosage, safety, and efficacy due to the under-representation of this population in clinical trials. Our aim was to investigate physiological changes reported in both pregnancy and cancer populations into a PBPK modeling framework that allows for a more accurate estimation of PK changes in pregnant patients with cancer. METHODS Paclitaxel and docetaxel were selected to validate a population model using clinical data from pregnant patients with cancer. The validated population model was subsequently used to predict the PK of acalabrutinib in pregnant patients with cancer. RESULTS The Simcyp pregnancy population model reasonably predicted the PK of docetaxel in pregnant patients with cancer, while a modified model that included a 2.5-fold increase in CYP2C8 abundance, consistent with the increased expression during pregnancy, was needed to reasonably predict the PK of paclitaxel in pregnant patients with cancer. Changes in protein binding levels of patients with cancer had a minimal impact on the predicted clearance of paclitaxel and docetaxel. PBPK modeling predicted approximately 60% lower AUC and Cmax for acalabrutinib in pregnant versus non-pregnant patients with cancer. CONCLUSIONS Our results suggest that PBPK modeling is a promising approach to investigate the effects of pregnancy and cancer on the PK of oncology drugs and potentially inform dosing for pregnant patients with cancer. Further evaluation and refinement of the population model are needed for pregnant patients with cancer with additional compounds and clinical PK data.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruby Leong
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (X.Y.); (M.G.); (S.S.)
| |
Collapse
|
8
|
Wang X, Chen F, Guo N, Gu Z, Lin H, Xiang X, Shi Y, Han B. Application of physiologically based pharmacokinetics modeling in the research of small-molecule targeted anti-cancer drugs. Cancer Chemother Pharmacol 2023; 92:253-270. [PMID: 37466731 DOI: 10.1007/s00280-023-04566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Physiologically based pharmacokinetics (PBPK) models are increasingly used in the drug research and development, especially in anti-cancer drugs. Between 2001 and 2020, a total of 89 small-molecule targeted antitumor drugs were approved in China and the United States, some of which already included PBPK modeling in their application or approval packages. This article intended to review the prevalence and application of PBPK model in these drugs. METHOD Article search was performed in the PubMed to collect English research articles on small-molecule targeted anti-cancer drugs using PBPK modeling. The selected articles were classified into nine categorizes according to the application areas and further analyzed. RESULT From 2001 to 2020, more than 60% of small-molecule targeted anti-cancer drugs (54/89) were studied using PBPK model with a wide range of application. Ninety research articles were included, of which 48 involved enzyme-mediated drug-drug interaction (DDI). Of these retrieved articles, Simcyp, GastroPlus, and PK-Sim were the most widely model building platforms, which account for 63.8%, 15.2%, and 8.6%, respectively. CONCLUSION PBPK modeling is commonly and widely used to research small-molecule targeted anti-cancer drugs.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Fang Chen
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China
| | - Zhichun Gu
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Houwen Lin
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Yufei Shi
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China.
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China.
| |
Collapse
|
9
|
Li C, Chen L, Li L, Chen W. Drug-drug interactions and dose management of BTK inhibitors when initiating nirmatrelvir/ritonavir (paxlovid) based on physiologically-based pharmacokinetic models. Eur J Pharm Sci 2023; 189:106564. [PMID: 37586436 DOI: 10.1016/j.ejps.2023.106564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/02/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Co-administration of Bruton's tyrosine kinase (BTK) inhibitors with nirmatrelvir/ritonavir is challenging because of potential drug-drug interactions (DDIs). However, clinical trials specifically evaluating such DDIs are absent. To evaluate and quantify the DDIs between them and provide rational dose management strategies of BTK inhibitors, we conducted this study using physiologically-based pharmacokinetic (PBPK) models. METHODS Physicochemical properties and pharmacokinetic parameters were acquired from the published literature and databases. The PBPK models were developed using Simcyp® software. These models were validated by comparing with published literature values. The successfully validated PBPK models were used to simulate the plasma concentration-time profiles and DDIs in a virtual healthy population receiving BTK inhibitors alone or with ritonavir. RESULTS Simulated plasma concentration-time profiles and pharmacokinetic parameters of each drug were in agreement with clinically observed values from literatures. Ritonavir increased ibrutinib maximum plasma concentration (Cmax) and the area under plasma concentration-time curve (AUC) 33- and 53.88-fold, respectively, increased zanubrutinib Cmax and AUC 2.57- and 3.18-fold, respectively, and increased acalabrutinib Cmax and AUC 3.85- and 6.54-fold, respectively. Based on our simulations, dose-adjustment strategies may consist of ibrutinib at 25 mg q48h, zanubrutinib at 80 mg twice-daily and acalabrutinib at 25 mg twice-daily with nirmatrelvir/ritonavir. CONCLUSIONS The PBPK models predicted the in vivo pharmacokinetics and the DDIs of BTK inhibitors and ritonavir. The prospective simulations not only provided scientific evidence regarding rational dosing management strategies when initiating nirmatrelvir/ritonavir therapy but also provided a reference for the design of clinical DDIs study that may save resources and time. SUMMARY Paxlovid could increase Cmax and AUC0-τ of BTK inhibitors (ibrutinib, zanubrutinib and acalabrutinib), and dose adjustment strategy of ibrutinib (25 mg q48h), zanubrutinib (80 mg q12h) and acalabrutinib (25 mg q12h) should be considered when combination with nirmatrelvir/ritonavir.
Collapse
Affiliation(s)
- Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Hanyu Road No.181, Shapingba district, Chongqing, China
| | - Lu Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Hanyu Road No.181, Shapingba district, Chongqing, China
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Hanyu Road No.181, Shapingba district, Chongqing, China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Hanyu Road No.181, Shapingba district, Chongqing, China; Chongqing University, Chongqing, China.
| |
Collapse
|
10
|
Wang F, Zhang X, Wang Y, Chen Y, Lu H, Meng X, Ye X, Chen W. Activation/Inactivation of Anticancer Drugs by CYP3A4: Influencing Factors for Personalized Cancer Therapy. Drug Metab Dispos 2023; 51:543-559. [PMID: 36732076 DOI: 10.1124/dmd.122.001131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), one of the most important members of the cytochrome P450 subfamily, is a crucial catalyst in the metabolism of numerous drugs. As it catalyzes numerous processes for drug activation or inactivation, the pharmacological activities and clinical outcomes of anticancer drugs metabolized by CYP3A4 are highly dependent on the enzyme's activity and expression. Due to the complexity of tumor microenvironments and various influencing factors observed in human in vitro models and clinical studies, the pharmacokinetics of most anticancer drugs are influenced by the extent of induction or inhibition of CYP3A4-mediated metabolism, and these details are not fully recognized and highlighted. Therefore, this interindividual variability due to genetic and nongenetic factors, together with the narrow therapeutic index of most anticancer drugs, contributes to their unique set of exposures and responses, which have important implications for achieving the expected efficacy and minimizing adverse events of chemotherapy for cancer in individuals. To elucidate the mechanisms of CYP3A4-mediated activation/inactivation of anticancer drugs associated with personalized therapy, this review focuses on the underlying determinants that contribute to differences in CYP3A4 metabolic activity and provides a comprehensive and valuable overview of the significance of these factors, which differs from current considerations for dosing regimens in cancer therapy. We also discuss knowledge gaps, challenges, and opportunities to explore optimal dosing regimens for drug metabolic activation/inactivation in individual patients, with particular emphasis on pooling and analyzing clinical information that affects CYP3A4 activity. SIGNIFICANCE STATEMENT: This review focuses on anticancer drugs that are activated/deactivated by CYP3A4 and highlights outstanding factors affecting the interindividual variability of CYP3A4 activity in order to gain a detailed understanding of CYP3A4-mediated drug metabolism mechanisms. A systematic analysis of available information on the underlying genetic and nongenetic determinants leading to variation in CYP3A4 metabolic activity to predict therapeutic response to drug exposure, maximize efficacy, and avoid unpredictable adverse events has clinical implications for the identification and development of CYP3A4-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xue Zhang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Yanyan Wang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Yunna Chen
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Huiyu Lu
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xiangyun Meng
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xi Ye
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Weidong Chen
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| |
Collapse
|
11
|
Frustaci AM, Deodato M, Zamprogna G, Cairoli R, Montillo M, Tedeschi A. Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities. Cancers (Basel) 2023; 15:1504. [PMID: 36900295 PMCID: PMC10000925 DOI: 10.3390/cancers15051504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Ibrutinib revolutionized the CLL treatment approach and prognosis demonstrating its efficacy and safety even at extended follow-up. During the last few years, several next-generation inhibitors have been developed to overcome the occurrence of toxicity or resistance in patients on continuous treatment. In a head-to-head comparison of two phase III trials, both acalabrutinib and zanubrutinib demonstrated a lower incidence of adverse events in respect to ibrutinib. Nevertheless, resistance mutations remain a concern with continuous therapy and were demonstrated with both first- and next-generation covalent inhibitors. Reversible inhibitors showed efficacy independently of previous treatment and the presence of BTK mutations. Other strategies are currently under development in CLL, especially for high-risk patients, and include BTK inhibitor combinations with BCl2 inhibitors with or without anti-CD20 monoclonal antibodies. Finally, new mechanisms for BTK inhibition are under investigations in patients progressing with both covalent and non-covalent BTK and BCl2 inhibitors. Here we summarize and discuss results from main experiences on irreversible and reversable BTK inhibitors in CLL.
Collapse
Affiliation(s)
- Anna Maria Frustaci
- ASST Grande Ospedale Metropolitano Niguarda, Niguarda Cancer Center, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Zhou D, Chen B, Sharma S, Tang W, Pepin X. Physiologically Based Absorption Modelling to Explore the Formulation and Gastric pH Changes on the Pharmacokinetics of Acalabrutinib. Pharm Res 2023; 40:375-386. [PMID: 35478298 DOI: 10.1007/s11095-022-03268-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Acalabrutinib, a selective Bruton's tyrosine kinase inhibitor, is a biopharmaceutics classification system class II drug. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to mechanistically describe absorption of immediate release capsule formulation of acalabrutinib in humans. Integration of in vitro biorelevant measurements, dissolution studies and in silico modelling provided clinically relevant inputs for the mechanistic absorption PBPK model. The batch specific dissolution data were integrated in two ways, by fitting a diffusion layer model scalar to the drug product dissolution with integration of drug substance laser diffraction particle size data, or by fitting a product particle size distribution to the dissolution data. The latter method proved more robust and biopredictive. In both cases, the drug surface solubility was well predicted by the Simcyp simulator. The model using the product particle size distribution (P-PSD) for each clinical batch adequately captured the PK profiles of acalabrutinib and its active metabolite. Average fold errors were 0.89 for both Cmax and AUC, suggesting good agreement between predicted and observed PK values. The model also accurately predicted pH-dependent drug-drug interactions between omeprazole and acalabrutinib, which was similar across all clinical formulations. The model predicted acalabrutinib geometric mean AUC ratios (with omeprazole vs acalabrutinib alone) were 0.51 and 0.68 for 2 batches of formulations, which are close to observed values of 0.43 and 0.51~0.63, respectively. The mechanistic absorption PBPK model could be potentially used for future applications such as optimizing formulations or predicting the PK for different batches of the drug product.
Collapse
Affiliation(s)
- Diansong Zhou
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, BioPharmaceuticals R&D, Boston, Massachusetts, USA. .,AstraZeneca, 35 Gatehouse Dr., Waltham, Massachusett, 02451, USA.
| | - Buyun Chen
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, BioPharmaceuticals R&D, South San Francisco, California, USA
| | - Shringi Sharma
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, BioPharmaceuticals R&D, South San Francisco, California, USA
| | - Weifeng Tang
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, BioPharmaceuticals R&D, Gaithersburg, Maryland, USA
| | - Xavier Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
13
|
Podoll T, Pearson PG, Kaptein A, Evarts J, de Bruin G, Emmelot-van Hoek M, de Jong A, van Lith B, Sun H, Byard S, Fretland A, Hoogenboom N, Barf T, Slatter JG. Identification and Characterization of ACP-5862, the Major Circulating Active Metabolite of Acalabrutinib: Both Are Potent and Selective Covalent Bruton Tyrosine Kinase Inhibitors . J Pharmacol Exp Ther 2023; 384:173-186. [PMID: 36310034 DOI: 10.1124/jpet.122.001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/27/2022] Open
Abstract
Acalabrutinib is a covalent Bruton tyrosine kinase (BTK) inhibitor approved for relapsed/refractory mantle cell lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma. A major metabolite of acalabrutinib (M27, ACP-5862) was observed in human plasma circulation. Subsequently, the metabolite was purified from an in vitro biosynthetic reaction and shown by nuclear magnetic resonance spectroscopy to be a pyrrolidine ring-opened ketone/amide. Synthesis confirmed its structure, and covalent inhibition of wild-type BTK was observed in a biochemical kinase assay. A twofold lower potency than acalabrutinib was observed but with similar high kinase selectivity. Like acalabrutinib, ACP-5862 was the most selective toward BTK relative to ibrutinib and zanubrutinib. Because of the potency, ACP-5862 covalent binding properties, and potential contribution to clinical efficacy of acalabrutinib, factors influencing acalabrutinib clearance and ACP-5862 formation and clearance were assessed. rCYP (recombinant cytochrome P450) reaction phenotyping indicated that CYP3A4 was responsible for ACP-5862 formation and metabolism. ACP-5862 formation Km (Michaelis constant) and Vmax were 2.78 μM and 4.13 pmol/pmol CYP3A/min, respectively. ACP-5862 intrinsic clearance was 23.6 μL/min per mg. Acalabrutinib weakly inhibited CYP2C8, CYP2C9, and CYP3A4, and ACP-5862 weakly inhibited CYP2C9 and CYP2C19; other cytochrome P450s, UGTs (uridine 5'-diphospho-glucuronosyltransferases), and aldehyde oxidase were not inhibited. Neither parent nor ACP-5862 strongly induced CYP1A2, CYP2B6, or CYP3A4 mRNA. Acalabrutinib and ACP-5862 were substrates of multidrug resistance protein 1 and breast cancer resistance protein but not OATP1B1 or OATP1B3. Our work indicates that ACP-5862 may contribute to clinical efficacy in acalabrutinib-treated patients and illustrates how proactive metabolite characterization allows timely assessment of drug-drug interactions and potential contributions of metabolites to pharmacological activity. SIGNIFICANCE STATEMENT: This work characterized the major metabolite of acalabrutinib, ACP-5862. Its contribution to the pharmacological activity of acalabrutinib was assessed based on covalent Bruton tyrosine kinase binding kinetics, kinase selectivity, and potency in cellular assays. The metabolic clearance and in vitro drug-drug interaction potential were also evaluated for both acalabrutinib and ACP-5862. The current data suggest that ACP-5862 may contribute to the clinical efficacy observed in acalabrutinib-treated patients and demonstrates the value of proactive metabolite identification and pharmacological characterization.
Collapse
Affiliation(s)
- Terry Podoll
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Paul G Pearson
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Allard Kaptein
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Jerry Evarts
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Gerjan de Bruin
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Maaike Emmelot-van Hoek
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Anouk de Jong
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Bart van Lith
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Hao Sun
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Stephen Byard
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Adrian Fretland
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Niels Hoogenboom
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - Tjeerd Barf
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| | - J Greg Slatter
- Acerta Pharma (a member of the AstraZeneca group), South San Francisco, California (T.P., J.E., A.F., J.G.S.); Acerta Pharma (a member of the AstraZeneca group) Oss, The Netherlands (G.d.B., M.E.-v.H., A.d.J., B.v.L., N.H.); Pearson Pharma Partners, Westlake Village, California (P.G.P.); Covance Laboratories, Madison, Wisconsin (H.S.); Arcinova, Alnwick, United Kingdom (S.B.); and Covalution Holding B.V., Ravenstein, The Netherlands (A.K., T.B.)
| |
Collapse
|
14
|
Kuss B, Nagarajan C, Hsieh WS, Cheah CY. Practical management of chronic lymphocytic leukemia with acalabrutinib. Leuk Lymphoma 2022; 63:2785-2794. [PMID: 35852229 DOI: 10.1080/10428194.2022.2098289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment of chronic lymphocytic leukemia (CLL) has been transformed in the past two decades. The introduction of targeted therapies has improved patient outcomes and the deliverability of effective therapies. Making the best use of the next wave of Bruton's tyrosine kinase (BTK) inhibitors requires an understanding of the nuances that separate the drugs in this class of agents. This paper reviews the newer BTK inhibitors and provides practical guidance on the management of CLL using acalabrutinib. Acalabrutinib is a safe and efficacious BTKi in the treatment of CLL. While some side effects appear to be an "on-target" effect of BTK inhibition, the selectivity of second-generation covalent BTK inhibitors such as acalabrutinib may result in a favorable safety profile due to less off-target kinase inhibition. Acalabrutinib represents a well-tolerated and effective alternative to ibrutinib in the management of CLL.
Collapse
Affiliation(s)
- Bryone Kuss
- Molecular Medicine and Genetics, Flinders University, Adelaide, SA, Australia.,Haematology Department, Flinders Medical Centre and SA Pathology, Adelaide, SA, Australia
| | - Chandramouli Nagarajan
- Department of Haematology, Singapore General Hospital, 1 Outram Rd, Block 3 Basement, Singapore 169608, Singapore.,SingHealth DUKE-NUS Blood Cancer Center and Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Son Hsieh
- ICON Cancer Centre, 1 Farrer Park Station Rd, Singapore 217562, Singapore.,Division of Hematologic Malignancies, The Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chan Yoon Cheah
- University of Western Australia Medical School, University of Western Australia, Perth, WA, Australia.,Haematology Department, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| |
Collapse
|
15
|
Malnoë D, Fardel O, Le Corre P. Involvement of Transporters in Intestinal Drug-Drug Interactions of Oral Targeted Anticancer Drugs Assessed by Changes in Drug Absorption Time. Pharmaceutics 2022; 14:pharmaceutics14112493. [PMID: 36432682 PMCID: PMC9696196 DOI: 10.3390/pharmaceutics14112493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: Oral targeted anticancer drugs are victims of presystemic pharmacokinetic drug−drug interactions (DDI). Identification of the nature of these DDIs, i.e., enzyme-based or/and transporter-based, is challenging, since most of these drugs are substrates of intestinal and/or hepatic cytochrome P-450 enzymes and of intestinal membrane transporters. (2) Methods: Variations in mean absorption time (MAT) between DDIs and control period (MAT ratios < 0.77 or >1.30) have been proposed to implicate transporters in DDIs at the intestinal level. This methodology has been applied to a large set of oral targeted anticancer drugs (n = 54, involved in 77 DDI studies), from DDI studies available either in the international literature and/or in publicly accessible FDA files. (3) Results: Significant variations in MAT were evidenced in 33 DDI studies, 12 of which could be explained by modulation of an efflux transporter. In 21 DDI studies, modulation of efflux transporters could not explain the MAT variation, suggesting a possible relevant role of influx transporters in the intestinal absorption. (4) Conclusions: This methodology allows one to suggest the involvement of intestinal transporters in DDIs, and should be used in conjunction with in vitro methodologies to help understanding the origin of DDIs.
Collapse
Affiliation(s)
- David Malnoë
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
- Correspondence:
| |
Collapse
|
16
|
Sharma S, Pepin X, Burri H, Zheng L, Kuptsova-Clarkson N, de Jong A, Yu T, MacArthur HL, Majewski M, Byrd JC, Furman RR, Ware JA, Mann J, Ramies D, Munugalavadla V, Sheridan L, Tomkinson H. Bioequivalence and Relative Bioavailability Studies to Assess a New Acalabrutinib Formulation That Enables Coadministration With Proton-Pump Inhibitors. Clin Pharmacol Drug Dev 2022; 11:1294-1307. [PMID: 36029150 DOI: 10.1002/cpdd.1153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Acalabrutinib is a Bruton tyrosine kinase (BTK) inhibitor approved to treat adults with chronic lymphocytic leukemia, small lymphocytic lymphoma, or previously treated mantle cell lymphoma. As the bioavailability of the acalabrutinib capsule (AC) depends on gastric pH for solubility and is impaired by acid-suppressing therapies, coadministration with proton-pump inhibitors (PPIs) is not recommended. Three studies in healthy subjects (N = 30, N = 66, N = 20) evaluated the pharmacokinetics (PKs), pharmacodynamics (PDs), safety, and tolerability of acalabrutinib maleate tablet (AT) formulated with pH-independent release. Subjects were administered AT or AC (orally, fasted state), AT in a fed state, or AT in the presence of a PPI, and AT or AC via nasogastric (NG) route. Acalabrutinib exposures (geometric mean [% coefficient of variation, CV]) were comparable for AT versus AC (AUCinf 567.8 ng h/mL [36.9] vs 572.2 ng h/mL [38.2], Cmax 537.2 ng/mL [42.6] vs 535.7 ng/mL [58.4], respectively); similar results were observed for acalabrutinib's active metabolite (ACP-5862) and for AT-NG versus AC-NG. The geometric mean Cmax for acalabrutinib was lower when AT was administered in the fed versus the fasted state (Cmax 255.6 ng/mL [%CV, 46.5] vs 504.9 ng/mL [49.9]); AUCs were similar. For AT + PPI, geometric mean Cmax was lower (371.9 ng/mL [%CV, 81.4] vs 504.9 ng/mL [49.9]) and AUCinf was higher (AUCinf 694.1 ng h/mL [39.7] vs 559.5 ng h/mL [34.6]) than AT alone. AT and AC were similar in BTK occupancy. Most adverse events were mild with no new safety concerns. Acalabrutinib formulations were comparable and AT could be coadministered with PPIs, food, or via NG tube without affecting the PKs or PDs.
Collapse
Affiliation(s)
| | - Xavier Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, England, UK
| | - Harini Burri
- AstraZeneca, South San Francisco, California, USA
| | | | | | | | - Ting Yu
- AstraZeneca, South San Francisco, California, USA
| | | | | | - John C Byrd
- Department of Internal Medicine and University of Cincinnati Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Richard R Furman
- New York-Presbyterian/Weill Cornell Medicine, New York, New York, USA
| | | | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, England, UK
| | - David Ramies
- AstraZeneca, South San Francisco, California, USA
| | | | - Louise Sheridan
- Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, England, UK
| | | |
Collapse
|
17
|
Chen L, Li C, Bai H, Li L, Chen W. Use of modeling and simulation to predict the influence of triazole antifungal agents on the pharmacokinetics of zanubrutinib and acalabrutinib. Front Pharmacol 2022; 13:960186. [PMID: 36299883 PMCID: PMC9588929 DOI: 10.3389/fphar.2022.960186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Bruton’s tyrosine kinase (BTK) inhibitors are commonly used in the targeted therapy of B-cell malignancies. It is reported that myelosuppression and fungal infections might occur during antitumor therapy of BTK inhibitors, therefore a combination therapy with triazole antifungals is usually required. Objective: To evaluate the influence of different triazoles (voriconazole, fluconazole, itraconazole) on the pharmacokinetics of BTK inhibitors (zanubrutinib, acalabrutinib) and to quantify the drug-drug interactions (DDIs) between them. Methods: The physiologically-based pharmacokinetic (PBPK) models were developed based on pharmacokinetic parameters and physicochemical data using Simcyp® software. These models were validated using clinically observed plasma concentrations data which based on existing published studies. The successfully validated PBPK models were used to evaluate and predict potential DDIs between BTK inhibitors and different triazoles. BTK inhibitors and triazole antifungal agents were simulated by oral administration. Results: Simulated plasma concentration-time profiles of the zanubrutinib, acalabrutinib, voriconazole, fluconazole, and itraconazole are consistent with the clinically observed profiles which based on existing published studies, respectively. The exposures of BTK inhibitors increase by varying degrees when co-administered with different triazole antifungals. At multiple doses regimen, voriconazole, fluconazole and itraconazole may increase the area under plasma concentration-time curve (AUC) of zanubrutinib by 127%, 81%, and 48%, respectively, and may increase the AUC of acalabrutinib by 326%, 119%, and 264%, respectively. Conclusion: The PBPK models sufficiently characterized the pharmacokinetics of BTK inhibitors and triazole antifungals, and were used to predict untested clinical scenarios. Voriconazole exhibited the greatest influence on the exposures of BTK inhibitors. The dosage of zanubrutinib or acalabrutinib need to be reduced when co-administered with moderate CYP3A inhibitors.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Hao Bai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing University, Chongqing, China
- *Correspondence: Wanyi Chen,
| |
Collapse
|
18
|
Bolleddula J, Gopalakrishnan S, Hu P, Dong J, Venkatakrishnan K. Alternatives to rifampicin: A review and perspectives on the choice of strong CYP3A inducers for clinical drug-drug interaction studies. Clin Transl Sci 2022; 15:2075-2095. [PMID: 35722783 PMCID: PMC9468573 DOI: 10.1111/cts.13357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
N-Nitrosamine (NA) impurities are considered genotoxic and have gained attention due to the recall of several marketed drug products associated with higher-than-permitted limits of these impurities. Rifampicin is an index inducer of multiple cytochrome P450s (CYPs) including CYP2B6, 2C8, 2C9, 2C19, and 3A4/5 and an inhibitor of OATP1B transporters (single dose). Hence, rifampicin is used extensively in clinical studies to assess drug-drug interactions (DDIs). Despite NA impurities being reported in rifampicin and rifapentine above the acceptable limits, these critical anti-infective drugs are available for therapeutic use considering their benefit-risk profile. Reports of NA impurities in rifampicin products have created uncertainty around using rifampicin in clinical DDI studies, especially in healthy volunteers. Hence, a systematic investigation through a literature search was performed to determine possible alternative index inducer(s) to rifampicin. The available strong CYP3A inducers were selected from the University of Washington DDI Database and their in vivo DDI potential assessed using the data from clinical DDI studies with sensitive CYP3A substrates. To propose potential alternative CYP3A inducers, factors including lack of genotoxic potential, adequate safety, feasibility of multiple dose administration to healthy volunteers, and robust in vivo evidence of induction of CYP3A were considered. Based on the qualifying criteria, carbamazepine, phenytoin, and lumacaftor were identified to be the most promising alternatives to rifampicin for conducting CYP3A induction DDI studies. Strengths and limitations of the proposed alternative CYP3A inducers, the magnitude of in vivo CYP3A induction, appropriate study designs for each alternative inducer, and future perspectives are presented in this paper.
Collapse
Affiliation(s)
- Jayaprakasam Bolleddula
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | | | - Ping Hu
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Jennifer Dong
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Karthik Venkatakrishnan
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| |
Collapse
|
19
|
Physiologically based pharmacokinetic combined BTK occupancy modeling for optimal dosing regimen prediction of acalabrutinib in patients alone, with different CYP3A4 variants, co-administered with CYP3A4 modulators and with hepatic impairment. Eur J Clin Pharmacol 2022; 78:1435-1446. [PMID: 35680661 DOI: 10.1007/s00228-022-03338-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To develop a mathematical model combined between physiologically based pharmacokinetic and BTK occupancy (PBPK-BO) to simultaneously predict pharmacokinetic (PK) and pharmacodynamic (PD) changes of acalabrutinib (ACA) and active metabolite ACP-5862 in healthy humans as well as PD in patients. Next, to use the PBPK-BO to determine the optimal dosing regimens in patients alone, with different CYP3A4 variants, when co-administration with four CYP3A4 modulators and in patients with hepatic impairment, respectively. METHODS The PBPK-BO model was built using physicochemical and biochemical properties of ACA and ACP-5862 and then verified by observed PK and PD data from healthy humans and patients. Finally, the model was applied to determine optimal dosing regimens in various clinical situations. RESULTS The simulations demonstrated that 100 mg ACA twice daily (BID) was the optimal dosing regimen in patients alone. Additionally, dosage regimens might be reduced to 50 mg BID in patients with five CYP3A4 variants. Moreover, the dosing regimen should be modified to 100 mg (even to 50 mg) once daily (QD) when co-administration with erythromycin or clarithromycin, and be increased to 200 mg BID with rifampicin, and but be avoided co-administration with itraconazole. Furthermore, dosage regimen simulations showed that optimal dosing might be decreased to 50 mg BID in patients with mild and moderate hepatic impairment, and be avoided taking ACA in severely hepatically impaired patients. CONCLUSION This PBPK-BO model can predict PK and PD in healthy humans and patients and also predict the optimal dosing regimens in various clinical situations.
Collapse
|
20
|
Weis TM, Gutierrez J, Kabel CC, King AC, Daley RJ, Stump SE. Real-world management of targeted therapies in chronic lymphocytic leukemia. J Oncol Pharm Pract 2022; 28:1411-1433. [PMID: 35350909 DOI: 10.1177/10781552221090869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The advent of novel targeted therapies, including B-cell receptor (BCR) pathway and B-cell lymphoma 2 (BCL2) inhibitors, has substantially changed the treatment paradigm for chronic lymphocytic leukemia (CLL). Although targeted therapies have improved outcomes compared to traditional chemoimmunotherapy in the front-line and relapsed or refractory settings, they are associated with resistance mutations and suboptimal outcomes in certain high-risk patients. Additionally, targeted therapies are associated with drug interactions and unique adverse effect profiles which can be challenging for patients and clinicians to manage. Ongoing studies continue to address questions regarding optimal sequencing of therapies, the role of treatment combinations, and the efficacy of next-generation novel agents. This review provides a comprehensive overview regarding the clinical management of targeted therapies for CLL and applies current literature to clinical practice.
Collapse
Affiliation(s)
- Taylor M Weis
- Department of Pharmacy, Leukemia Service, 5803Memorial Sloan Kettering Cancer Center, NY, USA
| | - Jillian Gutierrez
- Department of Pharmacy, Leukemia Service, 5803Memorial Sloan Kettering Cancer Center, NY, USA
| | - Charlene C Kabel
- Department of Pharmacy, Leukemia Service, 5803Memorial Sloan Kettering Cancer Center, NY, USA
| | - Amber C King
- Department of Pharmacy, Leukemia Service, 5803Memorial Sloan Kettering Cancer Center, NY, USA
| | - Ryan J Daley
- Department of Pharmacy, Leukemia Service, 5803Memorial Sloan Kettering Cancer Center, NY, USA
| | - Sarah E Stump
- Department of Pharmacy, Leukemia Service, 5803Memorial Sloan Kettering Cancer Center, NY, USA
| |
Collapse
|
21
|
Chen B, Zhou D, Wei H, Yotvat M, Zhou L, Cheung J, Sarvaria N, Lai R, Sharma S, Vishwanathan K, Ware J. Acalabrutinib CYP3A mediated Drug-Drug Interactions: Clinical Evaluations and Physiologically-Based Pharmacokinetic Modeling to inform dose adjustment strategy. Br J Clin Pharmacol 2022; 88:3716-3729. [PMID: 35165925 DOI: 10.1111/bcp.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
AIMS Clinical drug interaction studies with itraconazole and rifampicin demonstrated acalabrutinib is a sensitive substrate of CYP3A. A PBPK model was developed based on the data of these studies. One of the active CYP3A metabolite ACP-5862 was identified but never studied in a drug interaction scenario. This study aims to evaluate both parent and metabolite exposure change with coadministration of moderate CYP3A inhibitors and its impact on safety and efficacy. METHOD In an open label, randomized, 2-period study, we investigated the effect of coadministration of fluconazole or isavuconazole on the pharmacokinetics of acalabrutinib. BTK receptor occupancy and safety was compared between different treatments. Experimental data was compared to PBPK simulation results. RESULT Least square means of Acalabrutinib Cmax and AUC increased 1.37(1.14-1.64)and 1.60(1.45-1.77)-fold in the presence of isavuconazole and 1.48(1.10-1.98) and 2.16(1.94-2.40) fold in the presence of fluconazole, respectively. For ACP-5862, these values are 0.72(0.63-0.82) and 0.91(0.86-0.97) fold for isavuconazole and 0.65(0.49-0.87) and 0.95(0.91-0.99) fold for fluconazole coadministration. The PBPK model was able to recover acalabrutinib and ACP-5862 PK profiles in the study. BTK receptor occupancy change was minimal in the presence of isavuconazole. There were no deaths, SAEs, or subject discontinuation due to AEs in this study. Mild (Grade 1) AEs were the only AEs reported during the study, by 17% of the study population. CONCLUSION Our results demonstrated the impact of fluconazole and isavuconazole on the pharmacokinetics of acalabrutinib and ACP-5862 and suggests no dose adjustment is needed for concomitant administration with moderate CYP3A inhibitors. Current PBPK model can be used to propose dose adjustment for drug interactions via CYP3A.
Collapse
Affiliation(s)
- Buyun Chen
- Astrazeneca South San Francisco, CA, United States
| | | | - Hua Wei
- Astrazeneca South San Francisco, CA, United States
| | | | - Li Zhou
- Astrazeneca Waltham, MA, United States
| | - Jean Cheung
- Astrazeneca South San Francisco, CA, United States
| | | | - Richard Lai
- Astrazeneca South San Francisco, CA, United States
| | | | | | - Joseph Ware
- Astrazeneca South San Francisco, CA, United States
| |
Collapse
|
22
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
23
|
Eisenmann ED, Talebi Z, Sparreboom A, Baker SD. Boosting the oral bioavailability of anticancer drugs through intentional drug-drug interactions. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:23-35. [PMID: 34117715 PMCID: PMC8665934 DOI: 10.1111/bcpt.13623] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Oral anticancer drugs suffer from significant variability in pharmacokinetics and pharmacodynamics partially due to limited bioavailability. The limited bioavailability of anticancer drugs is due to both pharmaceutical limitations and physiological barriers. Pharmacokinetic boosting is a strategy to enhance the oral bioavailability of a therapeutic drug by inhibiting physiological barriers through an intentional drug-drug interaction (DDI). This type of strategy has proven effective across several therapeutic indications including anticancer treatment. Pharmacokinetic boosting could improve anticancer drugs lacking or with otherwise unacceptable oral formulations through logistic, economic, pharmacodynamic and pharmacokinetic benefits. Despite these benefits, pharmacokinetic boosting strategies could result in unintended DDIs and are only likely to benefit a limited number of targets. Highlighting this concern, pharmacokinetic boosting has mixed results depending on the boosted drug. While pharmacokinetic boosting did not significantly improve certain drugs, it has resulted in the commercial approval of boosted oral formulations for other drugs. Pharmacokinetic boosting to improve oral anticancer therapy is an expanding area of research that is likely to improve treatment options for cancer patients.
Collapse
Affiliation(s)
- Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Xu Y, Izumi R, Nguyen H, Kwan A, Kuo H, Madere J, Slatter JG, Podoll T, Vishwanathan K, Marbury T, Smith W, Preston RA, Sharma S, Ware JA. Evaluation of the Pharmacokinetics and Safety of a Single Dose of Acalabrutinib in Subjects With Hepatic Impairment. J Clin Pharmacol 2021; 62:812-822. [PMID: 34897701 PMCID: PMC9303693 DOI: 10.1002/jcph.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Abstract
Acalabrutinib received approval for treatment of adult patients with mantle cell lymphoma who received at least one prior therapy and adult patients with chronic lymphocytic leukemia or small lymphocytic lymphoma. This study investigated the impact of hepatic impairment (HI) on acalabrutinib PK and safety at a single 50-mg dose in fasted subjects. This study was divided into two studies: study 1, an open-label, parallel-group study in Child-Pugh Class A or B subjects and healthy subjects, and study 2, an open-label, parallel-group study in Child-Pugh Class C subjects and healthy subjects. Baseline characteristics and safety profiles were similar across groups. Acalabrutinib exposure (area under the curve [AUC]) increased slightly (1.90- and 1.48-fold) in subjects with mild (Child-Pugh Class A) and moderate (Child-Pugh Class B) HI compared with healthy subjects. In severe HI (Child-Pugh Class C), acalabrutinib exposure (AUC and maximum concentration [Cmax ]) increased approximately 5.0-fold and 3.6-fold, respectively. Results were consistent across total and unbound exposures. Severe HI did not impact total/unbound metabolite (ACP-5862) exposures; metabolite to parent ratio decreased to 0.6 - 0.8 (versus 3.1 - 3.6 in healthy subjects). In summary, single oral dose of 50 mg acalabrutinib was safe and well tolerated in subjects with mild, moderate and severe HI and in healthy control subjects. In subjects with severe HI, mean acalabrutinib exposure increased by up to 5-fold and should be avoided. Acalabrutinib does not require dose adjustment in patients with mild or moderate HI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Xu
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Raquel Izumi
- Clinical Development, AstraZeneca, South San Francisco, CA, USA
| | - Helen Nguyen
- Clinical Development, AstraZeneca, South San Francisco, CA, USA
| | - Anna Kwan
- Clinical Development, AstraZeneca, South San Francisco, CA, USA
| | - Howard Kuo
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Jeannine Madere
- Clinical Development, AstraZeneca, South San Francisco, CA, USA
| | - J Greg Slatter
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Terry Podoll
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Karthick Vishwanathan
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, AstraZeneca, Boston, MA, USA
| | | | - William Smith
- Alliance for Multispecialty Research, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Richard A Preston
- Division of Clinical Pharmacology, Department of Medicine, The Peggy and Harold Katz Family Drug Discovery Center, University of Miami Clinical and Translational Science Institutes (CTSI), University of Miami, Miami, FL, USA
| | - Shringi Sharma
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Joseph A Ware
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| |
Collapse
|
25
|
Pan X, Yamazaki S, Neuhoff S, Zhang M, Pilla Reddy V. Unraveling pleiotropic effects of rifampicin by using physiologically based pharmacokinetic modeling: Assessing the induction magnitude of P-glycoprotein-cytochrome P450 3A4 dual substrates. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:1485-1496. [PMID: 34729944 PMCID: PMC8674000 DOI: 10.1002/psp4.12717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Rifampicin induces both P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) through regulating common nuclear receptors (e.g., pregnane X receptor). The interplay of P-gp and CYP3A4 has emerged to be an important factor in clinical drug-drug interactions (DDIs) with P-gp-CYP3A4 dual substrates and requires qualitative and quantitative understanding. Although physiologically based pharmacokinetic (PBPK) modeling has become a widely accepted approach to assess DDIs and is able to reasonably predict DDIs caused by CYP3A4 induction and P-gp induction individually, the predictability of PBPK models for the effect of simultaneous P-gp and CYP3A4 induction on P-gp-CYP3A4 dual substrates remains to be systematically evaluated. In this study, we used a PBPK modeling approach for the assessment of DDIs between rifampicin and 12 drugs: three sensitive P-gp substrates, seven P-gp-CYP3A4 dual substrates, and two P-gp-CYP3A4 dual substrates and inhibitors. A 3.5-fold increase of intestinal P-gp abundance was incorporated in the PBPK models to account for rifampicin-mediated P-gp induction at steady state. The simulation results showed that accounting for P-gp induction in addition to CYP3A4 induction improved the prediction accuracy of the area under the concentration-time curve and maximum (peak) plasma drug concentration ratios compared with considering CYP3A4 induction alone. Furthermore, the interplay of relevant drug-specific parameters and its impact on the magnitude of DDIs were evaluated using sensitivity analysis. The PBPK approach described herein, in conjunction with robust in vitro and clinical data, can help in the prospective assessment of DDIs involving other P-gp and CYP3A4 dual substrates. The database reported in the present study provides a valuable aid in understanding the combined effect of P-gp and CYP3A4 induction during drug development.
Collapse
Affiliation(s)
- Xian Pan
- Simcyp DivisionCertara UK LimitedSheffieldUK
| | - Shinji Yamazaki
- Pharmacokinetics, Dynamics & MetabolismPfizer Worldwide Research & DevelopmentSan DiegoCaliforniaUSA
- Present address:
Drug Metabolism & PharmacokineticsJanssen Research & Development, LLCSan DiegoCaliforniaUSA
| | | | - Mian Zhang
- Simcyp DivisionCertara UK LimitedSheffieldUK
| | - Venkatesh Pilla Reddy
- Modelling and Simulation, Early Oncolog, Oncology R&DAstraZenecaCambridgeUK
- Clinical Pharmacology and Pharmacometrics, Biopharmaceuticals R&DAstraZenecaCambridgeUK
| |
Collapse
|
26
|
Djebli N, Buchheit V, Parrott N, Guerini E, Cleary Y, Fowler S, Frey N, Yu L, Mercier F, Phipps A, Meneses-Lorente G. Physiologically-Based Pharmacokinetic Modelling of Entrectinib Parent and Active Metabolite to Support Regulatory Decision-Making. Eur J Drug Metab Pharmacokinet 2021; 46:779-791. [PMID: 34495458 DOI: 10.1007/s13318-021-00714-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Entrectinib is a selective inhibitor of ROS1/TRK/ALK kinases, recently approved for oncology indications. Entrectinib is predominantly cleared by cytochrome P450 (CYP) 3A4, and modulation of CYP3A enzyme activity profoundly alters the pharmacokinetics of both entrectinib and its active metabolite M5. We describe development of a combined physiologically based pharmacokinetic (PBPK) model for entrectinib and M5 to support dosing recommendations when entrectinib is co-administered with CYP3A4 inhibitors or inducers. METHODS A PBPK model was established in Simcyp® Simulator. The initial model based on in vitro-in vivo extrapolation was refined using sensitivity analysis and non-linear mixed effects modeling to optimize parameter estimates and to improve model fit to data from a clinical drug-drug interaction study with the strong CYP3A4 inhibitor, itraconazole. The model was subsequently qualified against clinical data, and the final qualified model used to simulate the effects of moderate to strong CYP3A4 inhibitors and inducers on entrectinib and M5 pharmacokinetics. RESULTS The final model showed good predictive performance for entrectinib and M5, meeting commonly used predictive performance acceptance criteria in each case. The model predicted that co-administration of various moderate CYP3A4 inhibitors (verapamil, erythromycin, clarithromycin, fluconazole, and diltiazem) would result in an average increase in entrectinib exposure between 2.2- and 3.1-fold, with corresponding average increases for M5 of approximately 2-fold. Co-administration of moderate CYP3A4 inducers (efavirenz, carbamazepine, phenytoin) was predicted to result in an average decrease in entrectinib exposure between 45 and 79%, with corresponding average decreases for M5 of approximately 50%. CONCLUSIONS The model simulations were used to derive dosing recommendations for co-administering entrectinib with CYP3A4 inhibitors or inducers. PBPK modeling has been used in lieu of clinical studies to enable regulatory decision-making.
Collapse
Affiliation(s)
- Nassim Djebli
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Vincent Buchheit
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Elena Guerini
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Yumi Cleary
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Stephen Fowler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nicolas Frey
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Li Yu
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Jersey City, NJ, USA
| | - François Mercier
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Alex Phipps
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Roche Products Ltd, Welwyn, UK
| | - Georgina Meneses-Lorente
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Roche Products Ltd, Welwyn, UK
| |
Collapse
|
27
|
Tam CS, Ou YC, Trotman J, Opat S. Clinical pharmacology and PK/PD translation of the second-generation Bruton's tyrosine kinase inhibitor, zanubrutinib. Expert Rev Clin Pharmacol 2021; 14:1329-1344. [PMID: 34491123 DOI: 10.1080/17512433.2021.1978288] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Bruton's tyrosine kinase (BTK) inhibitors have revolutionized the treatment of B-cell lymphomas. Zanubrutinib was designed to achieve improved therapeutic concentrations and minimize off-target activities putatively accounting, in part, for the adverse effects seen with other BTK inhibitors.Areas covered: This drug profile covers zanubrutinib clinical pharmacology and the translation of pharmacokinetics (PK) and pharmacodynamics (PD) to clinical efficacy and safety profiles, by highlighting key differences between zanubrutinib and other BTK inhibitors. We discuss PK, sustained BTK occupancy, and potential factors affecting PK of zanubrutinib, including food effects, hepatic impairment, and drug-drug interactions. These data, along with exposure-response analyses, were used to support the recommended dose of 320 mg, either once daily or as 160 mg twice daily. Translation of PK/PD attributes into clinical effects was demonstrated in a randomized, phase 3 head-to-head study comparing it with ibrutinib in patients with Waldenström macroglobulinemia.Expert opinion: Among the approved BTK inhibitors, zanubrutinib is less prone to PK modulation by intrinsic and extrinsic factors, leading to more consistent, sustained therapeutic exposures and improved dosing convenience. Zanubrutinib PK/PD has translated into durable responses and improved safety, representing an important new treatment option for patients who benefit from BTK therapy.
Collapse
Affiliation(s)
- Constantine S Tam
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Haematology, St Vincent's Hospital, Fitzroy, VIC, Australia.,Department of Haematology, University of Melbourne, Parkville, VIC, Australia.,Department of Haematology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Ying C Ou
- Sr. Director, Clinical Pharmacology, BeiGene USA Inc., San Mateo, CA, USA
| | - Judith Trotman
- Department of Haematology, Concord Repatriation Hospital, Concord, NSW, Australia.,Department of Haematology, The University of Sydney, Concord, NSW, Australia
| | - Stephen Opat
- Director, Clinical Haematology, Monash Health, Clayton, VIC, Australia.,Director, Clinical Haematology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
28
|
Miao Y, Xu W, Li J. Assessing the pharmacokinetics of acalabrutinib in the treatment of chronic lymphocytic leukemia. Expert Opin Drug Metab Toxicol 2021; 17:1023-1030. [PMID: 34275396 DOI: 10.1080/17425255.2021.1955855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The first-in-class BTK inhibitor ibrutinib has substantially changed the therapeutic landscape of chronic lymphocytic leukemia (CLL). The next-generation BTK inhibitor acalabrutinib is more selective and may have less off-target toxicities as compared to ibrutinib. Acalabrutinib has demonstrated safety and efficacy in CLL and has been approved to treat CLL. AREAS COVERED Current clinical trials investigated acalabrutinib monotherapy or acalabrutinib-based combination therapies in relapsed/refractory and treatment-naive CLL. Data on the efficacy and safety of acalabrutinib in clinical trials were summarized in this review. The pharmacokinetic and pharmacodynamic data of acalabrutinib were also discussed. EXPERT OPINION Acalabrutinib selectively inhibits BTK by covalent binding and shows rapid absorption and elimination. Acalabrutinib does not inhibit EGFR, TEC, or ITK and shows fewer off-target toxicities. Completed phase 3 trials have demonstrated that acalabrutinib improves the outcomes of patients with relapsed/refractory CLL and patients with treatment-naive CLL. The phase 3 trial that evaluates acalabrutinib versus ibrutinib has met its primary endpoint. Early phase studies suggested the combinations of acalabrutinib with a CD20 antibody and venetoclax led to high rates of undetectable minimal residual disease in the bone marrow in CLL patients and might provide a fixed-duration therapeutic option for patients with CLL.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Pukou CLL Center, Nanjing, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Pukou CLL Center, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Pukou CLL Center, Nanjing, China
| |
Collapse
|
29
|
Han M, Qian J, Ye Z, Xu R, Chen D, Xie S, Cai J, Hu G. Functional assessment of the effects of CYP3A4 variants on acalabrutinib metabolism in vitro. Chem Biol Interact 2021; 345:109559. [PMID: 34153224 DOI: 10.1016/j.cbi.2021.109559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
AIM We aimed (i) to study the effects of genetic polymorphism of cytochrome P450 3A4 (CYP3A4) and drug interactions on acalabrutinib (ACA) metabolism and (ii) to investigate the mechanisms underlying the effects of CYP3A4 variants on the differential kinetic profiles of ACA and ibrutinib. METHOD Recombinant human CYP3A4 and variants were expressed using a Bac-to-Bac baculovirus expression system. The cell microsome was prepared and subjected to kinetic study. The analyte concentrations were determined by UPLC-MS/MS. A molecular docking assay was employed to investigate the mechanisms leading to differences in kinetic profiles. RESULTS The kinetic parameters of ACA, catalyzed by CYP3A4 and 28 of its variants, were determined, including Vmax, Km, and Ksi. CYP3A4.6-8, 12, 13, 17, 18, 20, and 30 lost their catalytic function. No significant differences were found for CYP3A4.4, 5, 10, 15, 31, and 34 compared with CYP3A4.1 with respect to intrinsic clearance (Vmax/Km, Clint). However, the Clint values of CYP3A4.9, 14, 16, 19, 23, 24, 28, 32 were obviously decreased, ranging from 0.02 to 0.05 μL/min/pmol. On the contrary, the catalytic activities of CYP3A4.2, 3, 11, 29, and 33 were increased dramatically. The Clint value of CYP3A4.11 was 5.95 times as high as that of CYP3A4.1. Subsequently, CYP3A4.1, 3, 11, 23, and 28 were chosen to study the kinetic changes in combination with ketoconazole. Interestingly, we found the inhibitory potency of ketoconazole varied in different variants. In addition, the kinetic parameters of ibrutinib and ACA were accordingly compared in different CYP3A4 variants. Significant differences in relative clearance were observed among variants, which would probably influence the distance between the redox site and the heme iron atom. CONCLUSION Genetic polymorphism of CYP3A4 extensively changes its ACA-metabolizing enzymatic activity. In combination with a CYP inhibitor, its inhibitory potency also varied among different variants. Even the same variants exhibited different capabilities catalyzing ACA. Its enzymatic capabilities are probably determined by the distance between the substrate and the heme iron atom, which could be impacted by mutation.
Collapse
Affiliation(s)
- Mingming Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jianchang Qian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhize Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Renai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Daoxing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Saili Xie
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Jianping Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China; The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, PR China.
| | - Guoxin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
30
|
Fleming MR, Xiao L, Jackson KD, Beckman JA, Barac A, Moslehi JJ. Vascular Impact of Cancer Therapies: The Case of BTK (Bruton Tyrosine Kinase) Inhibitors. Circ Res 2021; 128:1973-1987. [PMID: 34110908 PMCID: PMC10185355 DOI: 10.1161/circresaha.121.318259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Novel targeted cancer therapies have revolutionized oncology therapies, but these treatments can have cardiovascular complications, which include heterogeneous cardiac, metabolic, and vascular sequelae. Vascular side effects have emerged as important considerations in both cancer patients undergoing active treatment and cancer survivors. Here, we provide an overview of vascular effects of cancer therapies, focusing on small-molecule kinase inhibitors and specifically inhibitors of BTK (Bruton tyrosine kinase), which have revolutionized treatment and prognosis for B-cell malignancies. Cardiovascular side effects of BTK inhibitors include atrial fibrillation, increased risk of bleeding, and hypertension, with the former 2 especially providing a treatment challenge for the clinician. Cardiovascular complications of small-molecule kinase inhibitors can occur through either on-target (targeting intended target kinase) or off-target kinase inhibition. We will review these concepts and focus on the case of BTK inhibitors, highlight the emerging data suggesting an off-target effect that may provide insights into development of arrhythmias, specifically atrial fibrillation. We believe that cardiac and vascular sequelae of novel targeted cancer therapies can provide insights into human cardiovascular biology.
Collapse
Affiliation(s)
- Matthew R Fleming
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (L.X.)
| | - Klarissa D Jackson
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (K.D.J.)
| | - Joshua A Beckman
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ana Barac
- Georgetown University and MedStar Heart and Vascular Institute, MedStar Washing Hospital Center, DC (A.B.)
| | - Javid J Moslehi
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Cardio-Oncology Program (J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
31
|
Pilla Reddy V, Fretland AJ, Zhou D, Sharma S, Chen B, Vishwanathan K, McGinnity DF, Xu Y, Ware JA. Mechanistic physiology-based pharmacokinetic modeling to elucidate vincristine-induced peripheral neuropathy following treatment with novel kinase inhibitors. Cancer Chemother Pharmacol 2021; 88:451-464. [PMID: 34080039 PMCID: PMC8316236 DOI: 10.1007/s00280-021-04302-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Purpose Limited information is available regarding the drug–drug interaction (DDI) potential of molecular targeted agents and rituximab plus cyclophosphamide, doxorubicin (hydroxydaunorubicin), vincristine (Oncovin), and prednisone (R-CHOP) therapy. The addition of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib to R-CHOP therapy results in increased toxicity versus R-CHOP alone, including higher incidence of peripheral neuropathy. Vincristine is a substrate of P-glycoprotein (P-gp, ABCB1); drugs that inhibit P-gp could potentially cause increased toxicity when co-administered with vincristine through DDI. While the combination of the BTK inhibitor acalabrutinib and R-CHOP is being explored clinically, the DDI potential between these therapies is unknown. Methods A human mechanistic physiology-based pharmacokinetic (PBPK) model of vincristine following intravenous dosing was developed to predict potential DDI interactions with combination therapy. In vitro absorption, distribution, metabolism, and excretion and in vivo clinical PK parameters informed PBPK model development, which was verified by comparing simulated vincristine concentrations with observed clinical data. Results While simulations suggested no DDI between vincristine and ibrutinib or acalabrutinib in plasma, simulated vincristine exposure in muscle tissue was increased in the presence of ibrutinib but not acalabrutinib. Extrapolation of the vincristine mechanistic PBPK model to other P-gp substrates further suggested DDI risk when ibrutinib (area under the concentration–time curve [AUC] ratio: 1.8), but not acalabrutinib (AUC ratio: 0.92), was given orally with venetoclax or digoxin. Conclusion Overall, these data suggest low DDI risk between acalabrutinib and P-gp substrates with negligible increase in the potential risk of vincristine-induced peripheral neuropathy when acalabrutinib is added to R-CHOP therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00280-021-04302-5.
Collapse
Affiliation(s)
- Venkatesh Pilla Reddy
- Early Oncology, Oncology Research & Development, AstraZeneca, Cambridge, UK. .,Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals Research & Development, AstraZeneca, Cambridge, UK.
| | - Adrian J Fretland
- Early Oncology, Oncology Research & Development, AstraZeneca, Boston, MA, USA
| | - Diansong Zhou
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals Research & Development, AstraZeneca, Boston, MA, USA
| | - Shringi Sharma
- Quantitative Clinical Pharmacology, AstraZeneca , South San Francisco, CA, USA
| | - Buyun Chen
- Quantitative Clinical Pharmacology, AstraZeneca , South San Francisco, CA, USA
| | - Karthick Vishwanathan
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals Research & Development, AstraZeneca, Boston, MA, USA
| | - Dermot F McGinnity
- Early Oncology, Oncology Research & Development, AstraZeneca, Cambridge, UK
| | - Yan Xu
- Quantitative Clinical Pharmacology, AstraZeneca , South San Francisco, CA, USA
| | - Joseph A Ware
- Quantitative Clinical Pharmacology, AstraZeneca , South San Francisco, CA, USA
| |
Collapse
|
32
|
Wang X, Wang Z, Fan X, Yan M, Jiang L, Xia Y, Cao J, Liu Y. Comparison of the drug-drug interactions potential of ibrutinib and acalabrutinib via inhibition of UDP-glucuronosyltransferase. Toxicol Appl Pharmacol 2021; 424:115595. [PMID: 34038714 DOI: 10.1016/j.taap.2021.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/26/2022]
Abstract
Ibrutinib and acalabrutinib are two Bruton's tyrosine kinase (BTK) inhibitors which have gained Food and Drug Administration (FDA) approval for the treatment of various B cell malignancies. Herein, we investigated the effects of the two drugs on UDP-glucuronosyltransferase (UGT) activities to evaluate their potential risk for drug-drug interactions (DDIs) via UGT inhibition. Our data indicated that ibrutinib exerted broad inhibition on most of UGTs, including a potent competitive inhibition against UGT1A1 with a Ki value of 0.90 ± 0.03 μM, a noncompetitive inhibition against UGT1A3 and UGT1A7 with Ki values of 0.88 ± 0.03 μM and 2.52 ± 0.23 μM, respectively, while acalabrutinib only exhibited weak UGT inhibition towards all tested UGT isoforms. DDI risk prediction suggested that the inhibition against UGT1A1 and UGT1A3 by ibrutinib might bring a potential DDIs risk, while acalabrutinib was unlikely to trigger clinically significant UGT-mediated DDIs due to its weak effects. Our study raises an alarm bell about potential DDI risk associated with ibrutinib, however, the extrapolation from in vitro data to in vivo drug interactions should be taken with caution, and additional systemic study is needed.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Zhe Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoyu Fan
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Mingrui Yan
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Yangliu Xia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China.
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
33
|
Phase 2 study of the safety and efficacy of umbralisib in patients with CLL who are intolerant to BTK or PI3Kδ inhibitor therapy. Blood 2021; 137:2817-2826. [PMID: 33259589 PMCID: PMC8574211 DOI: 10.1182/blood.2020007376] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/09/2020] [Indexed: 01/31/2023] Open
Abstract
Intolerance is the most common reason for kinase inhibitor (KI) discontinuation in chronic lymphocytic leukemia (CLL). Umbralisib, a novel highly selective phosphatidylinositol 3-kinase δ (PI3Kδ)/CK1ε inhibitor, is active and well tolerated in CLL patients. In this phase 2 trial (NCT02742090), umbralisib was initiated at 800 mg/d in CLL patients requiring therapy, who were intolerant to prior BTK inhibitor (BTKi) or PI3K inhibitor (PI3Ki) therapy, until progression or toxicity. Primary end point was progression-free survival (PFS). Secondary end points included time to treatment failure and safety. DNA was genotyped for CYP3A4, CYP3A5, and CYP2D6 polymorphisms. Fifty-one patients were enrolled (44 BTKi intolerant and 7 PI3Kδi intolerant); median age was 70 years (range, 48-96), with a median of 2 prior lines of therapy (range, 1-7), 24% had del17p and/or TP53 mutation, and 65% had unmutated IGHV. Most common adverse events (AEs) leading to prior KI discontinuation were rash (27%), arthralgia (18%), and atrial fibrillation (16%). Median PFS was 23.5 months (95% CI, 13.1-not estimable), with 58% of patients on umbralisib for a longer duration than prior KI. Most common (≥5%) grade ≥3 AEs on umbralisib (all causality) were neutropenia (18%), leukocytosis (14%), thrombocytopenia (12%), pneumonia (12%), and diarrhea (8%). Six patients (12%) discontinued umbralisib because of an AE. Eight patients (16%) had dose reductions and were successfully rechallenged. These are the first prospective data to confirm that switching from a BTKi or alternate PI3Ki to umbralisib in this BTKi- and PI3Ki-intolerant CLL population can result in durable well-tolerated responses.
Collapse
|
34
|
Pilla Reddy V, Jo H, Neuhoff S. Food constituent- and herb-drug interactions in oncology: Influence of quantitative modelling on Drug labelling. Br J Clin Pharmacol 2021; 87:3988-4000. [PMID: 33733472 DOI: 10.1111/bcp.14822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS Herbal products, spices and/or fruits are perceived as inherently healthy; for instance, St. John's wort (SJW) is marketed as a natural antidepressant and patients often self-administer it concomitantly with oncology medications. However, food constituents/herbs can interfere with drug pharmacokinetics, with risk of altering pharmacodynamics and efficacy. The objective of this work was to develop a strategy to prioritize herb- or food constituent-drug interactions (FC-DIs) to better assess oncology drug clinical risk. METHODS Physiologically based pharmacokinetic (PBPK) models were developed by integrating in vitro parameters with the clinical pharmacokinetics of food constituents in grapefruit juice (bergamottin), turmeric (curcumin) or SJW (hyperforin). Perpetrator files were linked to verified victim PBPK models through appropriate interaction mechanisms (cytochrome P450 3A, breast cancer resistance protein, P-glycoprotein) and applied in prospective PBPK simulations to inform the likelihood and magnitude of changes in exposure to osimertinib, olaparib or acalabrutinib. RESULTS Reported FC-DIs with oncology drugs were well recovered, with absolute average fold error values of 1.10 (bergamottin), 1.05 (curcumin) and 1.01 (hyperforin). Prospective simulations with grapefruit juice and turmeric showed clinically minor to insignificant changes in exposure (<1.50-fold) to acalabrutinib, osimertinib and olaparib, but predicted 1.57-fold FC-DI risk between acalabrutinib and curcumin. Moderate DDI risk was expected when acalabrutinib, osimertinib or olaparib were dosed with SJW. CONCLUSIONS A model-informed decision tree based on mechanistic understanding of transporter and/or enzyme-mediated FC-DI is proposed based on bergamottin, curcumin and hyperforin FC-DI clinical data. Adopting this quantitative modelling approach should streamline herbal product safety assessments, assist in FC-DI management, and ultimately promote safe clinical use of oncology drugs.
Collapse
Affiliation(s)
- Venkatesh Pilla Reddy
- Modelling and Simulation, Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK.,Clinical Pharmacology and Quantitative Pharmacology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Heeseung Jo
- Modelling and Simulation, Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK.,Certara UK Ltd, Simcyp Division, Sheffield, UK
| | | |
Collapse
|
35
|
Wang K, Yao X, Zhang M, Liu D, Gao Y, Sahasranaman S, Ou YC. Comprehensive PBPK model to predict drug interaction potential of Zanubrutinib as a victim or perpetrator. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:441-454. [PMID: 33687157 PMCID: PMC8129716 DOI: 10.1002/psp4.12605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A physiologically based pharmacokinetic (PBPK) model was developed to evaluate and predict (1) the effect of concomitant cytochrome P450 3A (CYP3A) inhibitors or inducers on the exposures of zanubrutinib, (2) the effect of zanubrutinib on the exposures of CYP3A4, CYP2C8, and CYP2B6 substrates, and (3) the impact of gastric pH changes on the pharmacokinetics of zanubrutinib. The model was developed based on physicochemical and in vitro parameters, as well as clinical data, including pharmacokinetic data in patients with B-cell malignancies and in healthy volunteers from two clinical drug-drug interaction (DDI) studies of zanubrutinib as a victim of CYP modulators (itraconazole, rifampicin) or a perpetrator (midazolam). This PBPK model was successfully validated to describe the observed plasma concentrations and clinical DDIs of zanubrutinib. Model predictions were generally within 1.5-fold of the observed clinical data. The PBPK model was used to predict untested clinical scenarios; these simulations indicated that strong, moderate, and mild CYP3A inhibitors may increase zanubrutinib exposures by approximately four-fold, two- to three-fold, and <1.5-fold, respectively. Strong and moderate CYP3A inducers may decrease zanubrutinib exposures by two- to three-fold or greater. The PBPK simulations showed that clinically relevant concentrations of zanubrutinib, as a DDI perpetrator, would have no or limited impact on the enzyme activity of CYP2B6 and CYP2C8. Simulations indicated that zanubrutinib exposures are not impacted by acid-reducing agents. Development of a PBPK model for zanubrutinib as a DDI victim and perpetrator in parallel can increase confidence in PBPK models supporting zanubrutinib label dose recommendations.
Collapse
Affiliation(s)
- Kun Wang
- Shanghai Qiangshi Information Technology Co., Ltd, Shanghai, China
| | - Xueting Yao
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Miao Zhang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Yuying Gao
- Shanghai Qiangshi Information Technology Co., Ltd, Shanghai, China
| | | | - Ying C Ou
- BeiGene USA, Inc, San Mateo, CA, USA
| |
Collapse
|
36
|
Danilov AV, Persky DO. Incorporating acalabrutinib, a selective next-generation Bruton tyrosine kinase inhibitor, into clinical practice for the treatment of haematological malignancies. Br J Haematol 2020; 193:15-25. [PMID: 33216986 DOI: 10.1111/bjh.17184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 01/15/2023]
Abstract
Greater understanding of the mechanisms involved in the disease progression of haematological malignancies has led to the introduction of novel targeted therapies with reduced toxicity compared with chemotherapy-based regimens, which has expanded the treatment options for patients with mantle cell lymphoma (MCL) and chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL). Ibrutinib is a first-in-class Bruton tyrosine kinase (BTK) inhibitor indicated for the treatment of patients with CLL/SLL or relapsed/refractory MCL. However, next-generation BTK inhibitors have been developed with improved specificity and the potential to reduce the off-target toxicity observed with ibrutinib. Acalabrutinib is a highly selective, next-generation BTK inhibitor, which was granted accelerated approval by the US Food and Drug Administration in 2017 for the treatment of adult patients with MCL who have received at least one prior therapy. In November 2019, it was also granted approval for the treatment of adult patients with CLL/SLL on the basis of two phase 3 clinical trials. This review describes the current understanding of acalabrutinib according to clinical study data for the treatment of MCL and CLL/SLL and shares recommendations from our practice on how it should be used when treating patients in the clinic, including dosing, administration and management of adverse events.
Collapse
|
37
|
Awan FT, Al-Sawaf O, Fischer K, Woyach JA. Current Perspectives on Therapy for Chronic Lymphocytic Leukemia. Am Soc Clin Oncol Educ Book 2020; 40:1-10. [PMID: 32239979 DOI: 10.1200/edbk_279099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Therapy for chronic lymphocytic leukemia has improved dramatically over the past decade with the introduction of new targeted therapies and a paradigm shift toward targeted therapies for the majority of patients. Better understanding of prognostic factors has helped tailor therapy for individual patients, and work continues to identify optimal therapy for each patient. When therapy is required, most patients will be treated with targeted therapies, either the Bruton tyrosine kinase (BTK) inhibitors ibrutinib or acalabrutinib or the BCL-2 inhibitor venetoclax in combination with obinutuzumab. Without head-to-head comparisons showing differential efficacy among these options, considerations regarding safety, patient preference, and ability to sequence therapy currently influence treatment decisions. Also, clinical trials investigating combinations of these therapies have the potential to further change the standard of care. In this review, we cover the currently available options for the frontline treatment of chronic lymphocytic leukemia (CLL) and discuss safety considerations and toxicity management with each agent as well as novel combination strategies currently under investigation.
Collapse
Affiliation(s)
- Farrukh T Awan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Othman Al-Sawaf
- Department of Internal Medicine and Center of Integrated Oncology Cologne Bonn, University Hospital, Cologne, Germany
| | - Kirsten Fischer
- Department of Internal Medicine and Center of Integrated Oncology Cologne Bonn, University Hospital, Cologne, Germany
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
38
|
Fancher KM, Pappacena JJ. Drug interactions with Bruton's tyrosine kinase inhibitors: clinical implications and management. Cancer Chemother Pharmacol 2020; 86:507-515. [PMID: 32940733 DOI: 10.1007/s00280-020-04137-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Bruton's tyrosine kinase (BTK) plays an essential role in B-cell development, differentiation and B-cell receptor (BCR) signaling. The use of Bruton's tyrosine kinase inhibitors (BTKi) in the treatment of lymphoid malignancies has dramatically increased, owing to both impressive efficacy and ease of administration. However, BTKi have a range of drug-drug and drug-food interactions, which may alter drug efficacy and/or increase toxicity. Healthcare professionals should be aware of the probability of drug interactions with BTKi and make recommendations accordingly. In this article, we discuss the relevant drug-drug and drug-food interactions associated with ibrutinib, acalabrutinib, and zanubrutinib, and provide clinical practice recommendations for managing these interactions based on the available literature.
Collapse
Affiliation(s)
- Karen M Fancher
- Duquesne University School of Pharmacy, 322 Bayer Building, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA. .,University of Pittsburgh Medical Center Passavant, Pittsburgh, PA, USA.
| | | |
Collapse
|