1
|
Nikaein N, Tuerxun K, Cedersund G, Eklund D, Kruse R, Särndahl E, Nånberg E, Thonig A, Repsilber D, Persson A, Nyman E. Mathematical models disentangle the role of IL-10 feedbacks in human monocytes upon proinflammatory activation. J Biol Chem 2023; 299:105205. [PMID: 37660912 PMCID: PMC10556785 DOI: 10.1016/j.jbc.2023.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Inflammation is one of the vital mechanisms through which the immune system responds to harmful stimuli. During inflammation, proinflammatory and anti-inflammatory cytokines interplay to orchestrate fine-tuned and dynamic immune responses. The cytokine interplay governs switches in the inflammatory response and dictates the propagation and development of the inflammatory response. Molecular pathways underlying the interplay are complex, and time-resolved monitoring of mediators and cytokines is necessary as a basis to study them in detail. Our understanding can be advanced by mathematical models that enable to analyze the system of interactions and their dynamical interplay in detail. We, therefore, used a mathematical modeling approach to study the interplay between prominent proinflammatory and anti-inflammatory cytokines with a focus on tumor necrosis factor and interleukin 10 (IL-10) in lipopolysaccharide-primed primary human monocytes. Relevant time-resolved data were generated by experimentally adding or blocking IL-10 at different time points. The model was successfully trained and could predict independent validation data and was further used to perform simulations to disentangle the role of IL-10 feedbacks during an acute inflammatory event. We used the insight to obtain a reduced predictive model including only the necessary IL-10-mediated feedbacks. Finally, the validated reduced model was used to predict early IL-10-tumor necrosis factor switches in the inflammatory response. Overall, we gained detailed insights into fine-tuning of inflammatory responses in human monocytes and present a model for further use in studying the complex and dynamic process of cytokine-regulated acute inflammation.
Collapse
Affiliation(s)
- Niloofar Nikaein
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Kedeye Tuerxun
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Gunnar Cedersund
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden; Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Daniel Eklund
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Robert Kruse
- Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Department of Clinical Research Laboratory, Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Eewa Nånberg
- Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden; Faculty of Medicine and Health, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Antje Thonig
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Alexander Persson
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden; Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Elin Nyman
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Qin Y, Qin Y, Bubiajiaer H, Chen F, Yao J, Zhang M. Engineering constructed of high selectivity dexamethasone aptamer based on truncation and mutation technology. Front Bioeng Biotechnol 2022; 10:994711. [PMID: 36177181 PMCID: PMC9513367 DOI: 10.3389/fbioe.2022.994711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Various biosensors based on aptamers are currently the most popular rapid detection approaches, but the performance of these sensors is closely related to the affinity of aptamers. In this work, a strategy for constructed high-affinity aptamer was proposed. By truncating the bases flanking the 59 nt dexamethasones (DEX) original aptamer sequence to improve the sensitivity of the aptamer to DEX, and then base mutation was introduced to further improve the sensitivity and selectivity of aptamers. Finally, the 33 nt aptamer Apt-M13 with G-quadruplex structures was obtained. The dissociation constant (Kd) was determined to be 200 nM by Graphene oxide (GO)-based fluorometry. As-prepared Apt-M13 was used for a label-free colorimetric aptamer sensor based on gold nanoparticles, the LOD was 3.2-fold lower than the original aptamer described in previous works. The anti-interference ability of DEX analogs is also further improved. It indicates that truncation technology effectively improves the specificity of the aptamer to DEX in this work, and the introduction of mutation further improves the affinity and selectivity of the aptamer to DEX. Therefore, the proposed aptamer optimization method is also expected to become a general strategy for various aptamer sequences.
Collapse
Affiliation(s)
- Yadi Qin
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Yanan Qin
- College Life Science and Technology, Xinjiang University, Urumqi, China
| | | | - Fengxia Chen
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Jun Yao
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
- *Correspondence: Jun Yao, ; Minwei Zhang,
| | - Minwei Zhang
- College Life Science and Technology, Xinjiang University, Urumqi, China
- *Correspondence: Jun Yao, ; Minwei Zhang,
| |
Collapse
|