1
|
Zhang PZ, Ballard J, Esquivel Fagiani F, Smith D, Gibson C, Yu X. Large-Scale Compartmental Model-Based Study of Preclinical Pharmacokinetic Data and Its Impact on Compound Triaging in Drug Discovery. Mol Pharm 2025; 22:1230-1240. [PMID: 39960135 DOI: 10.1021/acs.molpharmaceut.4c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Reliable and robust human dose prediction plays a pivotal role in drug discovery. The prediction of human dose requires proper modeling of preclinical intravenous (IV) pharmacokinetic (PK) data, which is usually achieved either through noncompartmental analysis (NCA) or compartmental analysis. While NCA is straightforward, it loses valuable information about the shape of the PK curves. In contrast, compartmental analysis offers a more comprehensive interpretation but poses challenges in scaling up for high-throughput applications in discovery. To address this challenge, we developed computational frameworks, termed compartmental PK (CPK) and automated dose prediction (ADP), to enable automated compartmental model-based IV PK data modeling, translation, and simulation for human dose prediction in compound triaging and optimization. With CPK and ADP, we analyzed compounds with data collected at the MRL between 2013 and 2023 to quantitatively characterize the impact of different PK modeling and simulation methods on human dose prediction. Our study revealed that despite minimal impact on estimating animal PK parameters, different methods significantly impacted predicted human dose, exposure, and Cmax, driven more by different simulation assumptions than by the PK modeling itself. CPK-ADP therefore enables us to efficiently perform complex human dose predictions on a large scale while integrating the latest and best information available on absorption, distribution, and clearance to support decision-making in discovery.
Collapse
Affiliation(s)
- Peter Zhiping Zhang
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeanine Ballard
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Facundo Esquivel Fagiani
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Dustin Smith
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher Gibson
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Xiang Yu
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
2
|
Petersson C, Zhou X, Berghausen J, Cebrian D, Davies M, DeMent K, Eddershaw P, Riedmaier AE, Leblanc AF, Manveski N, Marathe P, Mavroudis PD, McDougall R, Parrott N, Reichel A, Rotter C, Tess D, Volak LP, Xiao G, Yang Z, Baker J. Current Approaches for Predicting Human PK for Small Molecule Development Candidates: Findings from the IQ Human PK Prediction Working Group Survey. AAPS J 2022; 24:85. [DOI: 10.1208/s12248-022-00735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
|
3
|
Peters SA, Petersson C, Blaukat A, Halle JP, Dolgos H. Prediction of active human dose: learnings from 20 years of Merck KGaA experience, illustrated by case studies. Drug Discov Today 2020; 25:909-919. [PMID: 31981792 DOI: 10.1016/j.drudis.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
High-quality dose predictions based on a good understanding of target engagement is one of the main translational goals in drug development. Here, we systematically evaluate active human dose predictions for 15 Merck KGaA/EMD Serono assets spanning several modalities and therapeutic areas. Using case studies, we illustrate the value of adhering to the translational best practices of having an exposure-response relationship in an appropriate animal model; having validated, translatable pharmacodynamic (PD) biomarkers measurable in Phase I populations in the right tissue; having a deeper understanding of biology; and capturing uncertainties in predictions. Given the gap in publications on the subject, we believe that the learnings from this unique diverse data set, which are generic to the industry, will trigger actions to improve future predictions.
Collapse
Affiliation(s)
- Sheila Annie Peters
- Translational Quantitative Pharmacology, Translational Medicine, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | - Carl Petersson
- Drug Metabolism and Disposition, Discovery Technology, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Andree Blaukat
- Translational Innovation Platform Oncology, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Joern-Peter Halle
- Translational Innovation Platform Immuno Oncology, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Hugues Dolgos
- Biopharmacy Center of Excellence, Servier RD, Suresnes, 92150, France
| |
Collapse
|
4
|
Patel D, Yang W, Lipert M, Wu T. Application and Impact of Human Dose Projection from Discovery to Early Drug Development. AAPS PharmSciTech 2020; 21:44. [PMID: 31897807 DOI: 10.1208/s12249-019-1598-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/01/2019] [Indexed: 12/31/2022] Open
Abstract
The application and impact of human dose projection (HDP) has been well recognized in the late drug development phase, with increasing appreciation earlier during discovery and early development. This commentary describes the perspective of pharmaceutical scientists on the evolving application and impact of HDP at various phases from discovery to early development, including lead generation, lead optimization, lead up to candidate nomination, and early drug development. The underlying fundamental concepts and key input parameters for HDP are briefly discussed. A broad overview of phase-specific tools and approaches commonly utilized for human dose projection in the pharmaceutical industry is provided. A discussion of phase-appropriate implementation strategies, associated limitations/assumptions and continuous refinement for HDP from discovery to early development is presented. The authors describe the phase-specific applications of human dose projection to facilitate key assessments and relative impact on decision points.
Collapse
|
5
|
Lucas AJ, Sproston JL, Barton P, Riley RJ. Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opin Drug Discov 2019; 14:1313-1327. [DOI: 10.1080/17460441.2019.1660642] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Adam J. Lucas
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, UK
| | | | - Patrick Barton
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, UK
| | | |
Collapse
|
6
|
Abstract
Avibactam is a novel non-β-lactam β-lactamase inhibitor that has been approved in the United States and Europe for use in combination with ceftazidime. Combinations of avibactam with aztreonam or ceftaroline fosamil have also been clinically evaluated. Until recently, there has been very little precedence of which pharmacokinetic/pharmacodynamic (PK/PD) indices and magnitudes are appropriate to use for β-lactamase inhibitors in population PK modeling for analyzing potential doses and susceptibility breakpoints. For avibactam, several preclinical studies using different in vitro and in vivo models have been conducted to identify the PK/PD index of avibactam and the magnitude of exposure necessary for effect in combination with ceftazidime, aztreonam, or ceftaroline fosamil. The PD driver of avibactam critical for restoring the activity of all three partner β-lactams was found to be time dependent rather than concentration dependent and was defined as the time that the concentration of avibactam exceeded a critical concentration threshold (%fT>CT). The magnitude of the CT and the time that this threshold needed to be exceeded to elicit particular PD endpoints varied depending on the model and the partner β-lactam. This review describes the preclinical studies used to determine the avibactam PK/PD target in combination with its β-lactam partners.
Collapse
|
7
|
Plock N, Vollert S, Mayer M, Hanauer G, Lahu G. Pharmacokinetic/Pharmacodynamic Modeling of the PDE4 Inhibitor TAK-648 in Type 2 Diabetes: Early Translational Approaches for Human Dose Prediction. Clin Transl Sci 2017; 10:185-193. [PMID: 28088839 PMCID: PMC5421726 DOI: 10.1111/cts.12436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 01/01/2023] Open
Abstract
TAK‐648 is a PDE4 inhibitor with demonstrated preclinical antidiabetic properties. Our objective was to develop a translational pharmacokinetic/pharmacodynamic (PK/PD) model for human type 2 diabetes (T2D) dose prediction using HbA1c results from a db/db mouse study. Estimated parameters in combination with tPDE4i values calculated for the clinical roflumilast dose of 500 μg were used to translate preclinical effects of TAK‐648 to required exposure in humans. A first‐in‐human study with single TAK‐648 doses of 0.05–0.85 mg in healthy volunteers yielded mean maximum TAK‐648 concentrations (Cmax) and area under the curve (AUC) values from 0.62–11.9 μg/L and 4.58–93.8 μg*h/L, respectively. Based on the performed pharmacokinetic/pharmacodynamic analysis and clinical PK results, clinical efficacy would be expected at a daily dose of 0.1 mg, which is well within the investigated clinical dose range. This result significantly enhanced the confidence in TAK‐648 for type 2 diabetes treatment and underlines the necessity of translational approaches in early preclinical phases.
Collapse
Affiliation(s)
- N Plock
- Takeda Pharmaceuticals International GmbH, Zurich, Switzerland
| | - S Vollert
- Institute for Pharmacology and Preclinical Drug Safety, Nycomed GmbH, Barsbüttel, Germany
| | - M Mayer
- Takeda Development Center Americas, Inc., Deerfield, Illinois, USA
| | - G Hanauer
- Takeda Pharmaceuticals International GmbH, Zurich, Switzerland
| | - G Lahu
- Takeda Pharmaceuticals International GmbH, Zurich, Switzerland
| |
Collapse
|
8
|
Optimization of human dose prediction by using quantitative and translational pharmacology in drug discovery. Future Med Chem 2015; 7:2351-69. [PMID: 26599348 DOI: 10.4155/fmc.15.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this perspective article, we explain how quantitative and translational pharmacology, when well-implemented, is believed to lead to improved clinical candidates and drug targets that are differentiated from current treatment options. Quantitative and translational pharmacology aims to build and continuously improve the quantitative relationship between drug exposure, target engagement, efficacy, safety and its interspecies relationship at every phase of drug discovery. Drug hunters should consider and apply these concepts to develop compounds with a higher probability of interrogating the clinical biological hypothesis. We offer different approaches to set an initial effective concentration or pharmacokinetic-pharmacodynamic target in man and to predict human pharmacokinetics that determine together the predicted human dose and dose schedule. All concepts are illustrated with ample literature examples.
Collapse
|