1
|
Komiyama M, Ozaki Y, Wada H, Yamakage H, Satoh-Asahara N, Yasoda A, Sunagawa Y, Morimoto T, Tamaki S, Masahiro Suzuki, Shibayama T, Kato T, Okada Y, Kita T, Takahashi Y, Hasegawa K. Randomized double-blind placebo-controlled multicenter trial for the effects of a polyherbal remedy, Yokukansan (YiganSan), in smokers with depressive tendencies. BMC Complement Med Ther 2022; 22:311. [PMID: 36434692 PMCID: PMC9701004 DOI: 10.1186/s12906-022-03788-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Smoking and depression are closely related and form a vicious cycle. Yokukansan (YiganSan) is a polyherbal remedy that has the effect of calming neuropsychiatric symptoms such as anger and irritation. To examine the efficacy of Yokukansan during smoking cessation (SC) therapy in smokers with depressive tendencies but without major depressive disorders requiring pharmacotherapy. METHODS A multicenter, double-blind, randomized, placebo-controlled, parallel-group comparison trial was conducted between June 2016 and May 2020 at 12 centers of the National Hospital Organization, Japan. This trial targeted smokers who first visited the SC outpatient clinics, did not receive any pharmacological treatment at the psychiatric or psychosomatic department, and scored 39 or more on the self-rating depression scale (SDS). Participants (n = 198) were randomly assigned to either the Yokukansan or placebo groups. The trial drug was initiated with the start of the SC treatment and continued for 12 weeks. The primary outcome was the high success rate of the SC treatment, and the secondary outcomes included changes in scores of the SDS and the Profile of Mood States (POMS) instrument. RESULTS The success rate of the SC treatment was similar between the placebo (63%) and Yokukansan (67%) groups (P = .649). The SDS scores (placebo: mean difference [MD] = -3.5, 95% confidence interval [CI][-5.8, -1.2], d = 0.42; Yokukansan: MD = -4.6, 95%CI[-6.8, -2.3], d = 0.55), and the "tension-anxiety" POMS-subscale scores (placebo: MD = -1.6, 95%CI[-2.5, -0.7], d = 0.52; Yokukansan: MD = -1.6, 95%CI[-2.9, -0.3], d = 0.36) showed significant improvement in both groups after the SC treatment. However, "depression-dejection" improved in the Yokukansan group (MD = -1.9, 95%CI[-3.1, -0.7], d = 0.44) but not in the placebo group (MD = -0.1, 95%CI[-1.0, 0.7], d = 0.04). Significant improvement in "fatigue" was noted in the Yokukansan group (MD = -2.1, 95%CI[-3.4, -0.9], d = 0.47) but not in the placebo group (MD = -0.5, 95%CI[-1.8, 0.8], d = 0.11). The time × group interaction on the improvement in "depression-dejection" was significant (P = .019). CONCLUSIONS Yokukansan does not increase the SC treatment's success rate but has additional positive effects on the psychological states due to the SC treatment in smokers with depressive tendencies but without apparent mental disorders. TRIAL REGISTRATION ID: UMIN000027036. Retrospectively registered at UMIN on April 18, 2017.
Collapse
Affiliation(s)
- Maki Komiyama
- grid.410835.bClinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, 612-8555 Japan
| | - Yuka Ozaki
- grid.410835.bClinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, 612-8555 Japan
| | - Hiromichi Wada
- grid.410835.bClinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, 612-8555 Japan
| | - Hajime Yamakage
- grid.410835.bClinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, 612-8555 Japan
| | - Noriko Satoh-Asahara
- grid.410835.bClinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, 612-8555 Japan
| | - Akihiro Yasoda
- grid.410835.bClinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, 612-8555 Japan
| | - Yoichi Sunagawa
- grid.469280.10000 0000 9209 9298Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tatsuya Morimoto
- grid.469280.10000 0000 9209 9298Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shinji Tamaki
- National Hospital Organization NaraMedical Center, Nara, Japan
| | - Masahiro Suzuki
- grid.416698.4Department of Clinical Research, National Hospital Organization Saitama Hospital, Saitama, Japan
| | - Takuo Shibayama
- Department of Respiratory Medicine, National Hospital Organization OkayamaMedical Center, Okayama, Japan
| | - Toru Kato
- Department of Clinical Research, National Hospital Organization TochigiMedical Center, Tochigi, Japan
| | - Yasumasa Okada
- grid.415635.0Division of Internal Medicine and Laboratory of Electrophysiology, Murayama Medical Center, Tokyo, Japan
| | - Toshiyuki Kita
- Department of Respiratory Medicine, National Hospital OrganizationKanazawa Medical Center, Kanazawa, Japan
| | - Yuko Takahashi
- grid.410835.bClinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, 612-8555 Japan
| | - Koji Hasegawa
- grid.410835.bClinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, 612-8555 Japan
| |
Collapse
|
2
|
Abruzzo PM, Canaider S, Pizzuti V, Pampanella L, Casadei R, Facchin F, Ventura C. Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence. Stem Cells Int 2020; 2020:8827038. [PMID: 33101419 PMCID: PMC7568162 DOI: 10.1155/2020/8827038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence plays a very important role in organismal aging increasing with age and in age-related diseases (ARDs). This process involves physiological, structural, biochemical, and molecular changes of cells, leading to a characteristic trait referred to "senescence-associated secretory phenotype (SASP)." In particular, with aging, stem cells (SCs) in situ exhibit a diminished capacity of self-renewal and show a decline in their functionality. The identification of interventions able to prevent the accumulation of senescent SCs in the organism or to pretreat cultured multipotent mesenchymal stromal cells (MSCs) prior to employing them for cell therapy is a main purpose of medical research. Many approaches have been investigated and resulted effective to prevent or counteract SC senescence in humans, as well as other animal models. In this work, we have reviewed the chance of using a number of herb-derived products as novel tools in the treatment of cell senescence, highlighting the efficacy of these agents, often still far from being clearly understood.
Collapse
Affiliation(s)
- Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
3
|
Basic Study of Drug-Drug Interaction between Memantine and the Traditional Japanese Kampo Medicine Yokukansan. Molecules 2018; 24:molecules24010115. [PMID: 30597998 PMCID: PMC6337661 DOI: 10.3390/molecules24010115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Several basic pharmacokinetic and pharmacological studies were conducted as part of a group of studies to clarify the drug-drug interaction (DDI) between memantine (MEM), a drug used to treat Alzheimer's disease, and yokukansan (YKS), a traditional Japanese Kampo medicine used to treat behavioral and psychological symptoms of dementia. The pharmacokinetic studies showed that there were no statistically significant differences in MEM concentrations in the plasma, brain, and urine between mice treated with MEM alone and with MEM plus YKS. Regarding candidate active ingredients of YKS, there were also no statistically significant differences in concentrations of geissoschizine methyl ether in the plasma and brain, urine, glycyrrhetinic acid in the plasma, and isoliquiritigenin in the urine, in mice treated with YKS alone or with MEM plus YKS. The pharmacological studies showed that isoliquiritigenin, which has an N-methyl-d-aspartic acid (NMDA) receptor antagonistic effect, did not affect the inhibitory effect of MEM on NMDA-induced intracellular Ca2+ influx in primary cultured rat cortical neurons. Moreover, YKS did not affect either the ameliorative effects of MEM on NMDA-induced learning and memory impairment, or the MEM-induced decrease in locomotor activities in mice. These results suggest that there is probably no pharmacokinetic or pharmacological interaction between MEM and YKS in mice, but more detailed studies are needed in the future. Our findings provide important information for future studies, to clarify the DDI more regarding the efficacy and safety of combined use of these drugs in a clinical situation.
Collapse
|
4
|
Potential Application of Yokukansan as a Remedy for Parkinson’s Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018. [DOI: 10.1155/2018/1875928
expr 870091642 + 807102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder, is characterized by complex motor and nonmotor symptoms. The clinical diagnosis of PD is defined by bradykinesia and other cardinal motor features, although several nonmotor symptoms are also related to disability, an impaired quality of life, and shortened life expectancy. Levodopa, which is used as a standard pharmacotherapy for PD, has limitations including a short half-life, fluctuations in efficacy, and dyskinesias with long-term use. There have been efforts to develop complementary and alternative therapies for incurable PD. Yokukansan (YKS) is a traditional herbal medicine that is widely used for treating neurosis, insomnia, and night crying in children. The clinical efficacy of YKS for treating behavioral and psychological symptoms, such as delusions, hallucinations, and impaired agitation/aggression subscale and activities of daily living scores, has mainly been investigated in the context of neurological disorders such as PD, Alzheimer’s disease, and other psychiatric disorders. Furthermore, YKS has previously been found to improve clinical symptoms, such as sleep disturbances, neuropsychiatric and cognitive impairments, pain, and tardive dyskinesia. Preclinical studies have reported that the broad efficacy of YKS for various symptoms involves its regulation of neurotransmitters including GABA, serotonin, glutamate, and dopamine, as well as the expression of dynamin and glutamate transporters, and changes in glucocorticoid hormones and enzymes such as choline acetyltransferase and acetylcholinesterase. Moreover, YKS has neuroprotective effects at various cellular levels via diverse mechanisms. In this review, we focus on the clinical efficacy and neuropharmacological effects of YKS. We discuss the possible mechanisms underpinning the effects of YKS on neuropathology and suggest that the multiple actions of YKS may be beneficial as a treatment for PD. We highlight the potential that YKS may serve as a complementary and alternative strategy for the treatment of PD.
Collapse
|
5
|
Jang JH, Jung K, Kim JS, Jung I, Yoo H, Moon C. Potential Application of Yokukansan as a Remedy for Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:1875928. [PMID: 30671124 PMCID: PMC6317124 DOI: 10.1155/2018/1875928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), the second most common progressive neurodegenerative disorder, is characterized by complex motor and nonmotor symptoms. The clinical diagnosis of PD is defined by bradykinesia and other cardinal motor features, although several nonmotor symptoms are also related to disability, an impaired quality of life, and shortened life expectancy. Levodopa, which is used as a standard pharmacotherapy for PD, has limitations including a short half-life, fluctuations in efficacy, and dyskinesias with long-term use. There have been efforts to develop complementary and alternative therapies for incurable PD. Yokukansan (YKS) is a traditional herbal medicine that is widely used for treating neurosis, insomnia, and night crying in children. The clinical efficacy of YKS for treating behavioral and psychological symptoms, such as delusions, hallucinations, and impaired agitation/aggression subscale and activities of daily living scores, has mainly been investigated in the context of neurological disorders such as PD, Alzheimer's disease, and other psychiatric disorders. Furthermore, YKS has previously been found to improve clinical symptoms, such as sleep disturbances, neuropsychiatric and cognitive impairments, pain, and tardive dyskinesia. Preclinical studies have reported that the broad efficacy of YKS for various symptoms involves its regulation of neurotransmitters including GABA, serotonin, glutamate, and dopamine, as well as the expression of dynamin and glutamate transporters, and changes in glucocorticoid hormones and enzymes such as choline acetyltransferase and acetylcholinesterase. Moreover, YKS has neuroprotective effects at various cellular levels via diverse mechanisms. In this review, we focus on the clinical efficacy and neuropharmacological effects of YKS. We discuss the possible mechanisms underpinning the effects of YKS on neuropathology and suggest that the multiple actions of YKS may be beneficial as a treatment for PD. We highlight the potential that YKS may serve as a complementary and alternative strategy for the treatment of PD.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Department of Korean Internal Medicine, Dunsan Korean Medical Hospital, Daejeon University, Daejeon 35235, Republic of Korea
| | - Kyungsook Jung
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Republic of Korea
| | - Joong-Sun Kim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Inchul Jung
- Department of Korean Neuropsychology, Dunsan Korean Medicine Hospital, Daejeon University, Daejeon 35235, Republic of Korea
| | - Horyong Yoo
- Department of Korean Internal Medicine, Dunsan Korean Medical Hospital, Daejeon University, Daejeon 35235, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Mizoguchi K, Ikarashi Y. Cellular Pharmacological Effects of the Traditional Japanese Kampo Medicine Yokukansan on Brain Cells. Front Pharmacol 2017; 8:655. [PMID: 28979206 PMCID: PMC5611794 DOI: 10.3389/fphar.2017.00655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/04/2017] [Indexed: 01/31/2023] Open
Abstract
Yokukansan (YKS) is a traditional Japanese Kampo medicine currently used for the treatment of the behavioral psychological symptoms associated with dementia (BPSD), which is frequently problematic in neurodegenerative disorders such as Alzheimer’s disease. Regarding the pharmacological mechanisms underlying its efficacy, we recently reviewed the multiple effects of YKS on the neurotransmitter systems (e.g., glutamatergic, serotonergic, dopaminergic, cholinergic, GABAergic, and adrenergic neurotransmission) in various brain regions that are related to the psychological, emotional, cognitive, or memory functions. These multiple effects are thought to be caused by multiple components included in YKS. In addition, YKS exhibits various effects on brain cells (i.e., neurons, glial cells including astrocytes, oligodendrocytes, and microglial cells, and endothelial cells). In this review, we summarize recent evidence demonstrating the cellular pharmacological effects of YKS on these brain cells, and discuss the current understanding of its efficacy and mechanism. In particular, YKS maintains the neuronal survival and function by multiple beneficial effects, including anti-apoptosis, anti-oxidation, anti-endoplasmic reticulum stress, and neurogenesis. YKS also acts on glial cells by: facilitating the transport of glutamate into astrocytes; promoting the proliferation and differentiation of oligodendrocytes; and enhancing the anti-inflammatory properties of microglial cells. These glial effects are thought to support neuronal functioning within the brain. Various ingredients involved in these effects have been identified, some of which can pass through the artificial blood–brain barrier without disrupting the endothelial tight junctions. This multitude of interactive effects displayed by YKS on neuronal and glial cells is suggested to be involved in the multitude of neuropsychopharmacological actions of YKS, which are related to the improvement of BPSD.
Collapse
Affiliation(s)
- Kazushige Mizoguchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co.Ibaraki, Japan
| | - Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co.Ibaraki, Japan
| |
Collapse
|
7
|
Mizoguchi K, Ikarashi Y. Multiple Psychopharmacological Effects of the Traditional Japanese Kampo Medicine Yokukansan, and the Brain Regions it Affects. Front Pharmacol 2017; 8:149. [PMID: 28377723 PMCID: PMC5359390 DOI: 10.3389/fphar.2017.00149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Yokukansan (YKS), a traditional Japanese Kampo medicine, has indications for use in night crying and irritability in children, as well as neurosis and insomnia. It is currently also used for the remedy of the behavioral and psychological symptoms of dementia (BPSD), such as aggressiveness, agitation, and hallucinations. In parallel with clinical evidence, a significant amount of fundamental researches have been undertaken to clarify the neuropsychopharmacological efficacies of YKS, with approximately 70 articles, including our own, being published to date. Recently, we reviewed the neuropharmacological mechanisms of YKS, including its effects on glutamatergic, serotonergic, and dopaminergic neurotransmission, and pharmacokinetics of the ingredients responsible for the effects. This review is aimed to integrate the information regarding the psychopharmacological effects of YKS with the brain regions known to be affected, to facilitate our understanding of the clinical efficacy of YKS. In this review, we first show that YKS has several effects that act to improve symptoms that are similar to BPSDs, like aggressiveness, hallucinations, anxiety, and sleep disturbance, as well as symptoms like tardive dyskinesia and cognitive deficits. We next provide the evidence showing that YKS can interact with various brain regions, including the cerebral cortex, hippocampus, striatum, and spinal cord, dysfunctions of which are related to psychiatric symptoms, cognitive deficits, abnormal behaviors, and dysesthesia. In addition, the major active ingredients of YKS, geissoschizine methyl ether and 18β-glycyrrhetinic acid, are shown to predominantly bind to the frontal cortex and hippocampus, respectively. Our findings suggest that YKS has multiple psychopharmacological effects, and that these are probably mediated by interactions among several brain regions. In this review, we summarize the available information about the valuable effects of a multicomponent medicine YKS on complex neural networks.
Collapse
Affiliation(s)
- Kazushige Mizoguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., IbarakiJapan
| | - Yasushi Ikarashi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., IbarakiJapan
| |
Collapse
|
8
|
Ishida Y, Ebihara K, Tabuchi M, Imamura S, Sekiguchi K, Mizoguchi K, Kase Y, Koganemaru G, Abe H, Ikarashi Y. Yokukansan, a Traditional Japanese Medicine, Enhances the L-DOPA-Induced Rotational Response in 6-Hydroxydopamine-Lesioned Rats: Possible Inhibition of COMT. Biol Pharm Bull 2016; 39:104-13. [PMID: 26725433 DOI: 10.1248/bpb.b15-00691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to investigate the effects of the traditional Japanese medicine yokukansan (YKS) on the function of dopamine (DA) in the rat nigrostriatal system. Unilateral 6-hydroxydopamine lesions were produced in the rat nigrostriatal system. Despite a marked loss in the striatal immunoreactivity of tyrosine hydroxylase on the lesion side, striatal serotonin (5-HT) immunoreactivity was not affected. Treatment using L-3,4-dihydroxyphenylalanine (L-DOPA) in conjunction with benserazide for 15 d induced abnormal involuntary movements (AIMs) such as locomotive (rotational response), axial, forelimb, and orolingual movements in the lesioned rats. The L-DOPA-induced locomotive and axial, but not forelimb and orolingual, AIMs were significantly increased and prolonged by the pre-administration of YKS. We next investigated the effects of YKS on the production of DA from L-DOPA in 5-HT synthetic RIN 14B cells. RIN 14B cells produced DA and its metabolite, 3-methoxytyramine (3-MT), following L-DOPA treatment. YKS significantly augmented DA production and inhibited its metabolism to 3-MT in a manner similar to the catechol-O-methyltransferase (COMT) inhibitor entacapone. YKS and some alkaloids (corynoxeine: CX, geissoschizine methyl ether: GM) in Uncaria hook, a constituent herb of YKS, also inhibited COMT activity, indicating that the augmenting effect of YKS on L-DOPA-induced DA production in 5-HT synthetic cells was due to the inhibition of COMT by CX and GM. Our results suggest that YKS facilitates the DA supplemental effect of L-DOPA, and that COMT inhibition by CX and GM contributes, at least in part, to the effects of YKS.
Collapse
Affiliation(s)
- Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ikarashi Y, Mizoguchi K. Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol Ther 2016; 166:84-95. [PMID: 27373856 DOI: 10.1016/j.pharmthera.2016.06.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
Dementia is a progressive neurodegenerative disorder with cognitive dysfunction, and is often complicated by behavioral and psychological symptoms of dementia (BPSD) including excitement, aggression, and hallucinations. Typical and atypical antipsychotics are used for the treatment of BPSD, but induce adverse events. The traditional Japanese Kampo medicine yokukansan (YKS), which had been originated from the traditional Chinese medicine Yi-Gan-San, has been reported to improve BPSD without severe adverse effects. In the preclinical basic studies, there are over 70 research articles indicating the neuropharmacological efficacies of YKS. In this review, we first describe the neuropharmacological actions of YKS and its bioactive ingredients. Multiple potential actions for YKS were identified, which include effects on serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmissions as well as neuroprotection, anti-stress effect, promotion of neuroplasticity, and anti-inflammatory effect. Geissoschizine methyl ether (GM) in Uncaria hook and 18β-glycyrrhetinic acid (GA) in Glycyrrhiza were responsible for several pharmacological actions of YKS. Subsequently, we describe the pharmacokinetics of GM and GA in rats. These ingredients were absorbed into the blood, crossed the blood-brain barrier, and reached the brain, in rats orally administered YKS. Moreover, autoradiography showed that [(3)H]GM predominantly distributed in the frontal cortex and [(3)H]GA in the hippocampus. Thus, YKS is a versatile herbal remedy with a variety of neuropharmacological effects, and may operate as a multicomponent drug including various active ingredients.
Collapse
Affiliation(s)
- Yasushi Ikarashi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| |
Collapse
|
10
|
Tamano H, Ide K, Adlard PA, Bush AI, Takeda A. Involvement of hippocampal excitability in amyloid β-induced behavioral and psychological symptoms of dementia. J Toxicol Sci 2016; 41:449-57. [DOI: 10.2131/jts.41.449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kazuki Ide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Paul Anthony Adlard
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, At Genetics Lane on Royal Parade, The University of Melbourne, Australia
| | - Ashley Ian Bush
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, At Genetics Lane on Royal Parade, The University of Melbourne, Australia
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
11
|
Ueki T, Mizoguchi K, Yamaguchi T, Nishi A, Sekiguchi K, Ikarashi Y, Kase Y. Yokukansan, a traditional Japanese medicine, decreases head-twitch behaviors and serotonin 2A receptors in the prefrontal cortex of isolation-stressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:23-30. [PMID: 25732836 DOI: 10.1016/j.jep.2015.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yokukansan, a traditional Japanese (Kampo) medicine, has recently been used to treat the behavioral and psychological symptoms of dementia (BPSD), including aggressiveness, excitability, and hallucination. The present study was designed to investigate the mechanisms underlying the ameliorative effects of yokukansan on BPSD using animals exhibiting hallucination-like behaviors. For this purpose, we initially examined whether chronic isolation stress increases the frequency of hallucination in response to a psychedelic drug. Using this animal model, we next examined the effects of yokukansan on drug-induced hallucination-like behaviors. Finally, we examined the density and mRNA levels of serotonin 2A (5-HT2A) receptors. MATERIALS AND METHODS Male mice were subjected to isolation stress for six weeks. Yokukansan was incorporated into food pellets, and administered to the mice for six weeks. In some experiments, yokukansan and each of seven constituent herbs were administered orally to the mice for the last two weeks during the six-week period of isolation stress. A 5-HT2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI, 2.5mg/kg), was injected into the mice, and head-twitch behaviors were quantified. The binding sites of 5-HT2A receptors on the plasma membrane of the prefrontal cortex (PFC) were assessed by a receptor-binding assay using tritium-labeled ketanserin, and the density and affinity were calculated from a Scatchard plot. The level of mRNAs was measured by PCR analyses. RESULTS Isolation stress enhanced the frequency of the DOI-induced head-twitch response, and yokukansan treatment by feeding significantly reduced this enhancement. Isolation stress significantly increased the 5-HT2A receptor density in the PFC, and yokukansan treatment by feeding as well as administration significantly down-regulated this increase. Isolation stress and yokukansan did not affect the affinity. Among seven constituent herbs, Bupleurum Root, Uncaria Hook, Japanese Angelica Root, and Glycyrrhiza down-regulated the increase, but statistically not significant, in which their efficacies were over 50% relative to yokukansan. Neither isolation stress nor yokukansan affected mRNA levels of 5-HT2A receptors. CONCLUSION Yokukansan attenuated drug-induced hallucination-like behaviors in isolated mice, which is suggested to be mediated by 5-HT2A receptor down-regulation in the PFC. This mechanism may underlie the ameliorative effects of yokukansan on hallucination.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Takuji Yamaguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Akinori Nishi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kyoji Sekiguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yasushi Ikarashi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| |
Collapse
|
12
|
Okamoto H, Iyo M, Ueda K, Han C, Hirasaki Y, Namiki T. Yokukan-san: a review of the evidence for use of this Kampo herbal formula in dementia and psychiatric conditions. Neuropsychiatr Dis Treat 2014; 10:1727-42. [PMID: 25246794 PMCID: PMC4168872 DOI: 10.2147/ndt.s65257] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Japanese traditional herbal medicine (Kampo) has its origins in traditional Chinese medicine (TCM). It was introduced to Japan in the middle of the sixth century and has evolved over the past 1,400 years after combining with Japan's original folk remedies. While it retains some similarities to TCM, Kampo has evolved in Japan, resulting in a system of medicine that has many differences from TCM. Kampo medicine is considered to be very safe; in Japan, Kampo herbal formulas are manufactured by licensed pharmaceutical companies, prescribed by Western-trained medical doctors (usually as a freeze-dried extract), and have quality control standards similar to those of prescription drugs. The present study examined Yokukan-san (Yi-Gan San in TCM), a Kampo formula that has been used empirically in Japan for more than 400 years. Accumulating clinical trials have demonstrated Yokukan-san's efficacy in treating patients with behavioral and psychological symptoms of dementia, which has resulted in the Japanese Society of Neurology listing it in the Japanese Guidelines for the Management of Dementia 2010. Efficacy in other diseases and conditions, such as sleep disorders, tardive dyskinesia, aggression, and impulsivity has also been reported. This article reviews both clinical and basic studies of Yokukan-san, with the goal of clarifying its clinical indications.
Collapse
Affiliation(s)
- Hideki Okamoto
- Department of Japanese-Oriental (Kampo) Medicine Chiba University Graduate School of Medicine, Chiba City, Japan
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Keigo Ueda
- Department of Japanese-Oriental (Kampo) Medicine Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Cheolsun Han
- Department of Japanese-Oriental (Kampo) Medicine Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Yoshiro Hirasaki
- Department of Japanese-Oriental (Kampo) Medicine Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Takao Namiki
- Department of Japanese-Oriental (Kampo) Medicine Chiba University Graduate School of Medicine, Chiba City, Japan
| |
Collapse
|
13
|
Kanno H, Kawakami Z, Iizuka S, Tabuchi M, Mizoguchi K, Ikarashi Y, Kase Y. Glycyrrhiza and Uncaria Hook contribute to protective effect of traditional Japanese medicine yokukansan against amyloid β oligomer-induced neuronal death. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:360-370. [PMID: 23838475 DOI: 10.1016/j.jep.2013.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/24/2013] [Accepted: 06/30/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yokukansan, a traditional Japanese (Kampo) medicine, composed of seven medicinal herbs has been traditionally used to treat neurosis, insomnia, and night crying and irritability in children. Recently, this medicine has been reported to improve the behavioral and psychological symptoms of dementia (BPSD) that often become problematic in patients with Alzheimer's disease (AD). AIM OF THE STUDY Amyloid β (Aβ) oligomers, which are extremely toxic to neurons, are involved in neurodegeneration in AD. In animals, yokukansan has been proven to improve memory impairments and BPSD-like behavior in transgenic mice overexpressing amyloid precursor protein and mice intracerebroventricularly injected with Aβ oligomers. These results suggest that yokukansan is potentially able to reduce the neurotoxicity of Aβ oligomers. Therefore, the present study aimed to explore the improving effects brought by yokukansan that consists of seven herbs for Aβ oligomer-induced neurotoxicity in vitro and to identify the candidate herbs in yokukansan's action. MATERIALS AND METHODS Primary cultured rat cortical neurons were used. Neurotoxicity induced by Aβ oligomers (3µM) and improving effects of yokukansan (300-1000 µg/mL) and its constituent herbs were evaluated in MTT assay, DNA fragmentation analysis, and electron microscopic analysis at 48h after treatment with Aβ oligomers and drugs. Moreover, changes in expression of genes related to endoplasmic reticulum (ER) stress and in caspase-3 activity that is the enzyme closely related to apoptosis were analyzed to investigate the underlying mechanisms. RESULTS Yokukansan ameliorated Aβ oligomer-induced neuronal damage in a dose-dependent manner in the MTT assay. This drug also suppressed DNA fragmentation caused by Aβ oligomers. Electron microscopic analysis suggested that yokukansan reduced karyopyknosis and the expansion of rough ER caused by Aβ oligomers. However, neither Aβ oligomers nor yokukansan affected the mRNA expression of any ER stress-related genes, including CHOP and GRP78. On the other hand, yokukansan dose-dependently suppressed Aβ oligomer-induced activation of caspase-3. Among the seven constituents of yokukansan, Glycyrrhiza and Uncaria Hook (60-200 µg/mL) suppressed Aβ oligomer-induced neuronal damage, DNA fragmentation, karyopyknosis, and caspase-3 activation to almost the same extent as yokukansan. CONCLUSIONS The present results suggest that yokukansan possesses an ameliorative effect against Aβ oligomer-induced neuronal apoptosis through the suppression of caspase-3 activation. Glycyrrhiza and Uncaria Hook may, at least in part, contribute to the neuroprotective effect of yokukansan. These mechanisms may underlie the improving effects of yokukansan on memory impairment and BPSD-like behaviors induced by Aβ oligomers.
Collapse
Affiliation(s)
- Hitomi Kanno
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Matsumoto K, Zhao Q, Niu Y, Fujiwara H, Tanaka K, Sasaki-Hamada S, Oka JI. Kampo formulations, chotosan, and yokukansan, for dementia therapy: existing clinical and preclinical evidence. J Pharmacol Sci 2013; 122:257-69. [PMID: 23883485 DOI: 10.1254/jphs.13r03cr] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Cognitive deficits and behavioral and psychological symptoms of dementia (BPSD) are typical features of patients with dementia such as Alzheimer's disease (AD), vascular dementia (VD), and other forms of senile dementia. Clinical evidence has demonstrated the potential usefulness of chotosan (CTS) and yokukansan (YKS), traditional herbal formulations called Kampo medicines, in the treatment of cognitive disturbance and BPSD in dementia patients, although the indications targeted by CTS and YKS in Kampo medicine differ. The availability of CTS and YKS for treating dementia patients is supported by preclinical studies using animal models of dementia that include cognitive/emotional deficits caused by aging and diabetes, dementia risk factors. These studies have led not only to the concept of a neuronal basis for the CTS- and YKS-induced amelioration of cognitive function and emotional/psychiatric symptom-related behavior in animal models, but also to a proposal that ingredient(s) of Uncariae Uncis cum Ramulus, a medicinal herb included in CTS and YKS, may play an important role in the actions of these formulae in dementia patients. Further studies are needed to clarify the active ingredients of these formulae and their target endogenous molecules implicated in the anti-dementia drug-like actions.
Collapse
Affiliation(s)
- Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Kushida H, Fukutake M, Tabuchi M, Katsuhara T, Nishimura H, Ikarashi Y, Kanitani M, Kase Y. Simultaneous quantitative analyses of indole and oxindole alkaloids of Uncaria Hook in rat plasma and brain after oral administration of the traditional Japanese medicine Yokukansan using high-performance liquid chromatography with tandem mass spectrometr. Biomed Chromatogr 2013; 27:1647-56. [DOI: 10.1002/bmc.2974] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Hirotaka Kushida
- Tsumura Research Laboratories; Tsumura & Co.; 3586 Yoshiwara Ami-machi, Inashiki-gun Ibaraki 300-1192 Japan
| | - Miwako Fukutake
- Tsumura Research Laboratories; Tsumura & Co.; 3586 Yoshiwara Ami-machi, Inashiki-gun Ibaraki 300-1192 Japan
| | - Masahiro Tabuchi
- Tsumura Research Laboratories; Tsumura & Co.; 3586 Yoshiwara Ami-machi, Inashiki-gun Ibaraki 300-1192 Japan
| | - Takao Katsuhara
- Kampo Formulation Development Center; Tsumura & Co.; 3586 Yoshiwara Ami-machi, Inashiki-gun Ibaraki 300-1192 Japan
| | - Hiroaki Nishimura
- Kampo Formulation Development Center; Tsumura & Co.; 3586 Yoshiwara Ami-machi, Inashiki-gun Ibaraki 300-1192 Japan
| | - Yasushi Ikarashi
- Tsumura Research Laboratories; Tsumura & Co.; 3586 Yoshiwara Ami-machi, Inashiki-gun Ibaraki 300-1192 Japan
| | - Masanao Kanitani
- Tsumura Research Laboratories; Tsumura & Co.; 3586 Yoshiwara Ami-machi, Inashiki-gun Ibaraki 300-1192 Japan
| | - Yoshio Kase
- Tsumura Research Laboratories; Tsumura & Co.; 3586 Yoshiwara Ami-machi, Inashiki-gun Ibaraki 300-1192 Japan
| |
Collapse
|
16
|
Yao ZG, Zhang L, Liang L, Liu Y, Yang YJ, Huang L, Zhu H, Ma CM, Qin C. The effect of PN-1, a Traditional Chinese Prescription, on the Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:518421. [PMID: 23476695 PMCID: PMC3588396 DOI: 10.1155/2013/518421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 01/30/2023]
Abstract
Traditional Chinese Medicine (TCM) is a complete medical system that has been practiced for more than 3000 years. Prescription number 1 (PN-1) consists of several Chinese medicines and is designed according to TCM theories to treat patients with neuropsychiatric disorders. The evidence of clinical practice suggests the benefit effects of PN-1 on cognitive deficits of dementia patients. We try to prove and explain this by using contemporary methodology and transgenic animal models of Alzheimer's disease (AD). The behavioral studies were developed to evaluate the memory of transgenic animals after intragastric administration of PN-1 for 3 months. Amyloid beta-protein (A β ) neuropathology was quantified using immunohistochemistry and ELISA. The western blotting was used to detect the levels of plasticity associated proteins. The safety of PN-1 on mice was also assessed through multiple parameters. Results showed that PN-1 could effectively relieve learning and memory impairment of transgenic animals. Possible mechanisms showed that PN-1 could significantly reduce plaque burden and A β levels and boost synaptic plasticity. Our observations showed that PN-1 could improve learning and memory ability through multiple mechanisms without detectable side effects on mice. We propose that PN-1 is a promising alternative treatment for AD in the future.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Ling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Liang Liang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Yu Liu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Ya-Jun Yang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Lan Huang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Hua Zhu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Chun-Mei Ma
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Chuan Qin
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| |
Collapse
|
17
|
Yamaguchi T, Tsujimatsu A, Kumamoto H, Izumi T, Ohmura Y, Yoshida T, Yoshioka M. Anxiolytic effects of yokukansan, a traditional Japanese medicine, via serotonin 5-HT1A receptors on anxiety-related behaviors in rats experienced aversive stress. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:533-539. [PMID: 22819689 DOI: 10.1016/j.jep.2012.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/31/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yokukansan, a traditional Japanese medicine (Kampo), has been reported in the treatment of behavioral and psychological symptoms of dementia (BPSD) such as aggression, anxiety and depression in patients with Alzheimer's disease and other forms of senile dementia. AIMS OF THE STUDY In the present study, we investigated the anxiolytic effects of yokukansan on anxiety-related behaviors in rats that have experienced aversive stress. MATERIALS AND METHODS We used male Wistar/ST rats which received an electrical footshock as aversive stress. Yokukansan at a dose of 1.0 g/kg was administered orally once a day for 14 or 16 day before behavioral tests. To evaluate the anxiolytic effects, we used the contextual fear conditioning (CFC) test and elevated plus-maze (EPM) test. And we also investigated effects of yokukansan on locomotor activity in the Open-field (OF) test and on the change in plasma corticosterone after CFC stress, in rats that had experienced footshock stress. RESULTS In the CFC test, rats that had experienced footshock showed significant freezing behavior on re-exposure to the box 14 day after footshock stress. Yokukansan significantly suppressed freezing behavior in the CFC test. In the EPM test on the 16th day after the CFC test, yokukansan significantly increased the time spent in open arms after footshock stress compared to control rats. However, repeated administration of yokukansan on the 14th day did not affect the decrease in locomotor activity and the increase in plasma corticosterone by re-exposure to the box 14 day after footshock stress in the OF test and determination of serum corticosterone, respectively. These anxiolytic effects by yokukansan were antagonized by WAY-100635, a selective 5-HT(1A) receptor antagonist, in the CFC test, but not the EPM test. Furthermore, 5-HT(1A) receptor agonist buspirone significantly suppressed freezing behavior in the CFC test; however, buspirone induced no change in the time spent in open arms in the EPM test. CONCLUSION These findings suggested that yokukansan has anxiolytic effects on anxiety-like behaviors induced by both innate fear and memory-dependent fear. In particular, yokukansan produced anxiolytic effects via 5-HT(1A) receptors in memory-dependent fear induced by aversive stress. Furthermore, yokukansan could be useful as one of the therapeutic drugs for the treatment of anxiety disorders and various mental disorders that have comorbid anxiety.
Collapse
Affiliation(s)
- Taku Yamaguchi
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sekiguchi K, Kanno H, Yamaguchi T, Ikarashi Y, Kase Y. Ameliorative effect of yokukansan on vacuous chewing movement in haloperidol-induced rat tardive dyskinesia model and involvement of glutamatergic system. Brain Res Bull 2012; 89:151-8. [PMID: 22982367 DOI: 10.1016/j.brainresbull.2012.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022]
Abstract
Effects of yokukansan (YKS) on vacuous chewing movement (VCM), which is an index for tardive dyskinesia, were investigated in haloperidol decanoate-treated rats. Haloperidol decanoate was injected to a thigh muscle once every four weeks for 18 weeks. The rats which exhibited VCM eight times or more in 3min were selected on the 12th week, and examined. A significant increase in VCM on the 12th week continued until the 18th week. Oral administration of YKS (0.1 and 0.5g/kg) once a day for three weeks (21 days) from the 12th week to 15th week ameliorated the haloperidol decanoate-induced increase in VCM in a dose-dependent manner. The significant ameliorative effect observed in 0.5g/kg YKS-treated rats was abolished by stopping administration for three weeks from the 15th week to the 18th week. The extracellular glutamate concentration and glutamate transporter mRNA expression in the striatum were evaluated by microdialysis and real-time reverse-transcription polymerase chain reaction assays at the 15th week. The striatal glutamate level increased in haloperidol-treated rats, and the increase was inhibited by treatment with YKS. The striatal GLT-1 mRNA level showed a tendency to decrease in the haloperidol-treated rats. The GLT-1 mRNA level after treatment with YKS (0.5g/kg) was greater than the control level. These results suggest the effect of YKS may be involved in the extracellular glutamate level and GLT-1 mRNA expression in the striatum.
Collapse
Affiliation(s)
- Kyoji Sekiguchi
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
19
|
Takeda A, Iwaki H, Ide K, Tamano H, Oku N. Therapeutic effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice. Brain Res Bull 2012; 87:551-5. [PMID: 22373913 DOI: 10.1016/j.brainresbull.2012.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 12/30/2022]
Abstract
In patients with dementia including Alzheimer's disease, hallucinations, agitation/aggression and irritability are known to frequently occur and as distressing behavioral and psychological symptoms of dementia (BPSD). On the basis of the evidence on clinical efficacy and safety of Yokukansan, a traditional Japanese herbal medicine, on BPSD, in the present study, Yokukansan was examined in the therapeutic effects on social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice. Yokukansan was p.o. administered for 7 days as a drinking water to isolated mice fed a zinc-deficient diet for 10 days, which exhibited aggressive behavior, and isolated pair-fed mice fed a control diet of the amount consumed by zinc-deficient mice for 10 days, which exhibited aggressive behavior. Aggressive behavior was evaluated by the resident-intruder test. Yokukansan (312 mg/kg/day) attenuated both aggressive behaviors of zinc-deficient and pair-fed mice. Because Yokukansan can suppress abnormal glutamatergic neuron activity, MK-801, an N-methyl-D-aspartate (NMDA) receptor blocker, and aminooxyacetic acid (AOAA), a γ-amino butyric acid (GABA) transaminase blocker, were also examined in the effects on social isolation-induced aggressive behavior. MK-801 (0.1 mg/kg) or AOAA (23 mg/kg) was i.p. injected into isolated aggressive mice. Thirty minutes later, the resident-intruder test was performed to evaluate the effect of the drugs. Both drugs attenuated aggressive behavior of zinc deficient mice, but not that of pair-fed mice. These results suggest that Yokukansan ameliorates social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice through the action against glutamatergic neurotransmitter system and other neurotransmitter systems.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Global COE, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | |
Collapse
|
20
|
Nishi A, Yamaguchi T, Sekiguchi K, Imamura S, Tabuchi M, Kanno H, Nakai Y, Hashimoto K, Ikarashi Y, Kase Y. Geissoschizine methyl ether, an alkaloid in Uncaria hook, is a potent serotonin ₁A receptor agonist and candidate for amelioration of aggressiveness and sociality by yokukansan. Neuroscience 2012; 207:124-36. [PMID: 22314317 DOI: 10.1016/j.neuroscience.2012.01.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Yokukansan (YKS), a traditional Japanese medicine, is composed of seven kinds of dried herbs. It is widely prescribed in clinical situation for treating psychiatric disorders such as aggressiveness in patients with dementia. We previously demonstrated that YKS and Uncaria hook (UH), which is a constituent herb of YKS, had a partial agonistic effect to 5-HT(1A) receptors in vitro. However, it has still been unclear whether this in vitro effect is reflected in in vivo, and what the active ingredients are. The purpose of the present study is to find the active ingredient in YKS and to demonstrate the effect in in vivo. In the present study, we first studied the effect of YKS and UH on aggressiveness and sociality in socially isolated mice. YKS and UH ameliorated the isolation-induced increased aggressiveness and decreased sociality, and these ameliorative effects were counteracted by coadministration of 5-HT(1A) receptor antagonist WAY-100635, or disappeared by eliminating UH from YKS. These results suggest that the effect of YKS is mainly attributed to UH, and the active ingredient is contained in UH. To find the candidate ingredients, we examined competitive binding assay and [(35)S] guanosine 5'-O-(3-thiotriphosphate) (GTPγS) binding assay of seven major alkaloids in UH using Chinese hamster ovary cells expressing 5-HT(1A) receptors artificially. Only geissoschizine methyl ether (GM) among seven alkaloids potently bound to 5-HT(1A) receptors and acted as a partial agonist. This in vitro result on GM was further demonstrated in the socially isolated mice. As did YKS and UH, GM ameliorated the isolation-induced increased aggressiveness and decreased sociality, and the effect was counteracted by coadministration of WAY-100635. These lines of results suggest that GM in UH is potent 5-HT(1A) receptor agonist and a candidate for pharmacological effect of YKS on aggressiveness and sociality in socially isolated mice.
Collapse
Affiliation(s)
- A Nishi
- Tsumura Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fujiwara H, Takayama S, Iwasaki K, Tabuchi M, Yamaguchi T, Sekiguchi K, Ikarashi Y, Kudo Y, Kase Y, Arai H, Yaegashi N. Yokukansan, a traditional Japanese medicine, ameliorates memory disturbance and abnormal social interaction with anti-aggregation effect of cerebral amyloid β proteins in amyloid precursor protein transgenic mice. Neuroscience 2011; 180:305-13. [PMID: 21303686 DOI: 10.1016/j.neuroscience.2011.01.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
The deposition of amyloid β protein (Aβ) is a consistent pathological hallmark of Alzheimer's disease (AD) brains. Therefore, inhibition of Aβ aggregation in the brain is an attractive therapeutic and preventive strategy in the development of disease-modifying drugs for AD. An in vitro study demonstrated that yokukansan (YKS), a traditional Japanese medicine, inhibited Aβ aggregation in a concentration-dependent manner. An in vivo study demonstrated that YKS and Uncaria hook (UH), a constituent of YKS, prevented the accumulation of cerebral Aβ. YKS also improved the memory disturbance and abnormal social interaction such as increased aggressive behavior and decreased social behavior in amyloid precursor protein transgenic mice. These results suggest that YKS is likely to be a potent and novel therapeutic agent to prevent and/or treat AD, and that this may be attributed to UH.
Collapse
Affiliation(s)
- H Fujiwara
- Department of Traditional Asian Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Eckert GP. Traditional used Plants against Cognitive Decline and Alzheimer Disease. Front Pharmacol 2010; 1:138. [PMID: 21833177 PMCID: PMC3153012 DOI: 10.3389/fphar.2010.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/03/2010] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by progressive memory deficits, impaired cognitive function, and altered and inappropriate behavior. Aging represents the most important risk factor for AD and the global trend in the phenomenon of population aging has dramatic consequences for public health, healthcare financing, and delivery systems in the word and, especially in developing countries. Mounting evidence obtained in in vitro and in vivo studies, suggests that various traditionally used plants in Asia, India, and Europe significantly affect key metabolic alterations culminating in AD-typical neurodegeneration. The present article aims to bring the reader up-to-date on the most recent studies and advances describing the direct and indirect activities of traditional used plants and its constituents possibly relieving features of AD. A variety of traditional used plants and its extracts exerted activities on AD related drug targets including AChE activity, antioxidative activity, modulation of Aβ-producing secretase activities, Aβ-degradation, heavy metal chelating, induction of neurotrophic factors, and cell death mechanisms. Although pre-clinical investigations identified promising drug candidates for AD, clinical evidences are still pending.
Collapse
Affiliation(s)
- Gunter Peter Eckert
- Department of Pharmacology, Campus Riedberg, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
23
|
Hiratsuka T, Matsuzaki S, Miyata S, Kinoshita M, Kakehi K, Nishida S, Katayama T, Tohyama M. Yokukansan inhibits neuronal death during ER stress by regulating the unfolded protein response. PLoS One 2010; 5:e13280. [PMID: 20967273 PMCID: PMC2953506 DOI: 10.1371/journal.pone.0013280] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/05/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recently, several studies have reported Yokukansan (Tsumura TJ-54), a traditional Japanese medicine, as a potential new drug for the treatment of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress is known to play an important role in the pathogenesis of AD, particularly in neuronal death. Therefore, we examined the effect of Yokukansan on ER stress-induced neurotoxicity and on familial AD-linked presenilin-1 mutation-associated cell death. METHODS We employed the WST-1 assay and monitored morphological changes to evaluate cell viability following Yokukansan treatment or treatment with its components. Western blotting and PCR were used to observe the expression levels of GRP78/BiP, caspase-4 and C/EBP homologous protein. RESULTS Yokukansan inhibited neuronal death during ER stress, with Cnidii Rhizoma (Senkyu), a component of Yokukansan, being particularly effective. We also showed that Yokukansan and Senkyu affect the unfolded protein response following ER stress and that these drugs inhibit the activation of caspase-4, resulting in the inhibition of ER stress-induced neuronal death. Furthermore, we found that the protective effect of Yokukansan and Senkyu against ER stress could be attributed to the ferulic acid content of these two drugs. CONCLUSIONS Our results indicate that Yokukansan, Senkyu and ferulic acid are protective against ER stress-induced neuronal cell death and may provide a possible new treatment for AD.
Collapse
Affiliation(s)
- Toru Hiratsuka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shinsuke Matsuzaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Japan
- The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shingo Miyata
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Mitsuhiro Kinoshita
- Laboratory of Biopharmaco Informatics, School of Pharmaceutical Sciences, Kinki University, Higashiosaka, Japan
| | - Kazuaki Kakehi
- Laboratory of Biopharmaco Informatics, School of Pharmaceutical Sciences, Kinki University, Higashiosaka, Japan
| | - Shinji Nishida
- Department of Kampo Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Japan
| | - Masaya Tohyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Japan
- The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
24
|
Ameliorative effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient young mice. Brain Res Bull 2010; 83:351-5. [PMID: 20813168 DOI: 10.1016/j.brainresbull.2010.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/05/2010] [Accepted: 08/23/2010] [Indexed: 12/20/2022]
Abstract
Yokukansan, a traditional Japanese medicine has been used to cure neuropsychological disorders. In the present study, the effect of Yokukansan on social isolation-induced aggressive behavior was examined in zinc-deficient mice, which were fed a zinc-deficient diet and a drinking water containing Yokukansan for 2 weeks. In the resident-intruder test, the rate of mice that exhibited aggressive behavior in zinc-deficient mice, which was significantly higher than that in the control mice, was significantly decreased by administration of Yokukansan. The basal level of serum glucocorticoid, which was significantly higher in zinc-deficient mice, was lowered by administration of Yokukansan. On the other hand, serum glucocorticoid levels after the resident-intruder test were almost the same between the control and zinc-deficient mice. However, administration of Yokukansan to zinc-deficient mice significantly increased serum glucocorticoid level after the resident-intruder test and the significant difference in the rate of serum corticosterone level after the test to the basal level between the control and zinc-deficient mice was abolished. Dietary zinc deficiency increases the basal levels of serum glucocorticoid, while may insufficiently increase serum glucocorticoid levels in the resident-intruder test. The concentrations of glutamate and GABA (γ-aminobutyric acid) in the brain were significantly higher in zinc-deficient mice, while Yokukansan ameliorated the significant increases. These results indicate that Yokukansan ameliorates social isolation-induced aggressive behavior of zinc-deficient mice, probably via amelioration of abnormal glucocorticoid secretion. The ameliorative effect seems to be linked to the modification of glutamatergic neuron activity after administration of Yokukansan.
Collapse
|
25
|
Sekiguchi K, Imamura S, Yamaguchi T, Tabuchi M, Kanno H, Terawaki K, Kase Y, Ikarashi Y. Effects of yokukansan and donepezil on learning disturbance and aggressiveness induced by intracerebroventricular injection of amyloid β protein in mice. Phytother Res 2010; 25:501-7. [PMID: 20803480 DOI: 10.1002/ptr.3287] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 07/09/2010] [Indexed: 11/11/2022]
Abstract
The effects of yokukansan and donepezil on learning disturbance and aggressiveness were examined in amyloid β protein (Aβ)-injected mice. Intellicage tests showed that both yokukansan and donepezil ameliorated Aβ-induced learning disturbance, but the ameliorating effect of donepezil was not enhanced by concomitant administration of yokukansan. On the other hand, a social interaction test showed that Aβ-induced aggressiveness was ameliorated by yokukansan, but not by donepezil. Co-administration of both drugs also ameliorated aggressiveness, as did yokukansan alone. In vitro binding assays revealed that yokukansan did not bind to choline receptors or transporters. In vitro enzyme assays revealed that yokukansan did not affect choline acetyltransferase activity or inhibit acetylcholinesterase activity, as did donepezil. These results suggest that yokukansan might ameliorate aggressiveness without interfering with the pharmacological efficacy (antidementia effect) of donepezil and also that concomitant administration of yokukansan might be useful for amelioration of aggressiveness, which was not lessened by donepezil. The difference in the efficacies of both drugs may be due to a difference in their pharmacological mechanisms.
Collapse
Affiliation(s)
- Kyoji Sekiguchi
- Tsumura Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Saito S, Kobayashi T, Osawa T, Kato S. Effectiveness of Japanese herbal medicine yokukansan for alleviating psychiatric symptoms after traumatic brain injury. Psychogeriatrics 2010; 10:45-8. [PMID: 20594286 DOI: 10.1111/j.1479-8301.2010.00313.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Japanese herbal medicine, yokukansan, has been reported to improve behavioral and psychological symptoms of dementia and activities of daily living in patients with dementia. In the present case report, the authors report the effectiveness of yokukansan in treating psychiatric symptoms after traumatic brain injury. An 85-year-old man, who underwent surgery for hepatic portal cholangiocarcinoma, sustained traumatic brain injury after falling from bed as the result of postoperative delirium. He subsequently presented with psychiatric symptoms, showing markedly impulsive and aggressive behavior. Neuroleptics did not alleviate the symptoms. Ultimately, we succeeded in controlling the symptoms, without adverse effects, by giving the patient yokukansan. Yokukansan shows the potential for reducing aggressive and impulsive behavior in dementia as well as in other psychiatric diseases.
Collapse
Affiliation(s)
- Shinnosuke Saito
- Department of Psychiatry, Jichi Medical University, Shimotsuke City, Tochigi, Japan.
| | | | | | | |
Collapse
|
27
|
Ikarashi Y, Iizuka S, Imamura S, Yamaguchi T, Sekiguchi K, Kanno H, Kawakami Z, Yuzurihara M, Kase Y, Takeda S. Effects of yokukansan, a traditional Japanese medicine, on memory disturbance and behavioral and psychological symptoms of dementia in thiamine-deficient rats. Biol Pharm Bull 2010; 32:1701-9. [PMID: 19801831 DOI: 10.1248/bpb.32.1701] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of yokukansan (TJ-54) on memory disturbance and behavioral and psychological symptoms of dementia (BPSD) were investigated in thiamine-deficient (TD) rats which were produced by feeding a TD diet for 37 d. Daily oral administration of TJ-54 (0.5, 1.0 g/kg) ameliorated the memory disturbance, anxiety-like behavior, the increase in aggressive behaviors, the decrease in social behaviors, and several neurological symptoms including opisthotonus observed in TD rats, in a dose-dependent manner. In addition, histopathological examinations showed that TJ-54 inhibited the degeneration of neuronal and astroglial cells in the brain stem, hippocampus and cortex in TD rats. Microdialysis experiments showed that TJ-54 inhibited extracellular glutamate rise in the ventral posterior medial thalamus in TD rats. These results suggest that TJ-54 possesses the preventive or progress inhibitive effect against the development of memory disturbance and BPSD-like behaviors induced by the degeneration of neuronal and astroglial cells resulting from TD. TJ-54 may inhibit glutamate-mediated excitotoxicity as one of mechanisms.
Collapse
Affiliation(s)
- Yasushi Ikarashi
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kanno H, Sekiguchi K, Yamaguchi T, Terawaki K, Yuzurihara M, Kase Y, Ikarashi Y. Effect of yokukansan, a traditional Japanese medicine, on social and aggressive behaviour of para-chloroamphetamine-injected rats. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.09.0016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
Yokukansan, a traditional Japanese medicine, has been approved by the Ministry of Health, Labour, and Welfare of Japan as a remedy for neurosis, insomnia or night crying and irritability in children. It has recently been reported to improve behavioural and psychological symptoms of dementia, such as hallucinations, agitation, and aggressiveness in patients with some forms of senile dementia. Little is known about the mechanism underlying the effectiveness of yokukansan. Our aim was to clarify the involvement of yokukansan in serotonergic function in para-chloroamphetamine (PCA)-induced aggressive behaviour in rats.
Methods
The effect of yokukansan on social interactions, including social and aggressive behaviour, was examined in PCA-injected rats. Concentration and release level of serotonin (5-HT) in the hypothalamus were measured.
Key findings
PCA reduced not only the 5-HT concentration but also the high K+ -induced 5-HT release in the rat hypothalamus. Social interaction tests showed a significant decrease in social behaviour and a significant increase in aggressive behaviour in the PCA-treated rats. The decrease in social behaviour was ameliorated by the 5-HT1A agonist buspirone and further decreased by a 5-HT1A antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclo-hexanecarboxamide trihydrochloride (WAY-100635), whereas it was further decreased by the 5-HT2A agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), and ameliorated by the 5-HT2A antagonist ketanserin. On the other hand, the increase in aggressive behaviour was ameliorated by buspirone but not affected by WAY-100635, whereas it was enhanced by DOI and ameliorated by ketanserin. A single injection of yokukansan ameliorated the PCA-induced decrease in social behaviour but not aggressive behaviour. Chronic treatment for 14 days with yokukansan ameliorated PCA-induced abnormal behaviour, decreased social behaviour and increased aggressive behaviour, but it did not ameliorate PCA-induced decreases in the cerebral 5-HT concentration and 5-HT release. The ameliorative effects of chronic yokukansan on behaviour were counteracted by co-administration of WAY-100635.
Conclusions
These results suggest that yokukansan might have two different effects: an acute effect on social behaviour and a chronic effect on aggressive behaviour. One of the mechanisms of these effects of yokukansan may be related to the agonistic effect on 5-HT1A receptors.
Collapse
Affiliation(s)
- Hitomi Kanno
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Kyoji Sekiguchi
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Takuji Yamaguchi
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Kiyoshi Terawaki
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Mitsutoshi Yuzurihara
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Yasushi Ikarashi
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| |
Collapse
|
29
|
Mizoguchi K, Tanaka Y, Tabira T. Anxiolytic effect of a herbal medicine, yokukansan, in aged rats: involvement of serotonergic and dopaminergic transmissions in the prefrontal cortex. JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:70-76. [PMID: 19799980 DOI: 10.1016/j.jep.2009.09.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/18/2009] [Accepted: 09/22/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Aging is thought to affect emotions including anxiety, and a herbal medicine, yokukansan (YKS), is used to treat emotional disturbances associated with age-related neurodegenerative disorders such as Alzheimer's disease, but its pharmacological properties have not been fully understood. The present study was designed to examine whether YKS improves age-related anxiety using F344/N aged rats. Moreover, the effects of YKS on liver function were examined. MATERIALS AND METHODS YKS was administered to 21-month-old aged rats for 3 months. Locomotor activity of young control (4 months old), aged control (24 months old), and YKS-treated aged rats was examined, and the anxiety-related responses of these animals were evaluated by counting the number of excrements during locomotor activity measurement and in the elevated plus-maze test. The extracellular concentrations of serotonin and dopamine in the prefrontal cortex (PFC) were also measured using a microdialysis technique. Moreover, concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and ammonia (NH(3)) in plasma were measured. RESULTS Although locomotor activity did not change among any experimental groups, the number of excrements was significantly increased in aged rats compared to young rats, and this increase was significantly improved by YKS treatment. Aged rats also showed significant decreases in time and frequency in the open arm of the elevated plus-maze, and these decreases were significantly improved by YKS treatment. Extracellular concentrations of serotonin and dopamine in the aged PFC were significantly decreased; serotonin was increased over the level of young rats and dopamine was partially improved by YKS treatment, respectively. In addition, YKS improved age-related increase in NH(3) concentration, but did not affect AST and ALT. CONCLUSIONS YKS has improving activity for age-related increased anxiety and enhances serotonergic and dopaminergic transmissions in the aged PFC. These mechanisms provide information important for the treatment of anxiety in the elderly. Furthermore, the present data confirm partially the Kampo concept "liver disease".
Collapse
Affiliation(s)
- Kazushige Mizoguchi
- Section of Oriental Medicine, Department of Geriatric Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan.
| | | | | |
Collapse
|
30
|
Tanaka Y, Mizoguchi K. Influence of aging on chondroitin sulfate proteoglycan expression and neural stem/progenitor cells in rat brain and improving effects of a herbal medicine, yokukansan. Neuroscience 2009; 164:1224-34. [PMID: 19729050 DOI: 10.1016/j.neuroscience.2009.08.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 11/19/2022]
Abstract
There is evidence of structural and functional deterioration in the brain, including the prefrontal cortex (PFC) and hippocampus, during the normal aging process in animals and humans. Extracellular matrix-associated glycoproteins, such as chondroitin sulfate proteoglycans (CSPGs), are involved in not only maintaining the structures and functions of adult neurons, but also regulating the proliferation, migration, and neurite outgrowth of neural stem cells in the brain. On the other hand, a herbal medicine, yokukansan (YKS), is used in a variety of clinical situations for treating symptoms associated with age-related neurodegenerative disorders such as Alzheimer's disease, but its pharmacological properties have not been fully understood. The present study was designed to clarify the influence of aging and the improving effects of YKS on the expression of aggrecan, a major molecule of CSPGs, and on the proliferation and migration of neural stem/progenitor cells identified by bromodeoxyuridine (BrdU) incorporation in the PFC and hippocampus including the dentate gyrus. Aged rats (24 months old) showed a significant increase in aggrecan expression throughout the PFC and in the hippocampus particularly in the CA3 subfield, but not the dentate gyrus compared to young rats (5 months old), evaluated by the immunohistochemical method. YKS treatment decreased the age-related increase in aggrecan expression as well as normal expression in young rats. Aged rats also showed a decreased number of BrdU-labeled cells in the PFC and hippocampus, and these decreases were improved by YKS treatment, which also increased the numbers in young rats. These results suggest that aging influences the microenvironment for adult and immature neurons in the brain, which may affect the proliferation and migration of neural stem/progenitor cells, and YKS has pharmacological potency for these age-related events. These findings help to understand the physiology and pathology of the aged brain and provide an anti-aging strategy for the brain.
Collapse
Affiliation(s)
- Y Tanaka
- Section of Oriental Medicine, Department of Geriatric Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology (NCGG), 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | | |
Collapse
|