1
|
Otero MC, Ceric F, Miranda-Rojas S, Carreño C, Escares R, Escobar MJ, Saracini C, Atala C, Ramírez-Barrantes R, Gordillo-Fuenzalida F. Documentary Analysis of Hypericum perforatum (St. John's Wort) and Its Effect on Depressive Disorders. Pharmaceuticals (Basel) 2024; 17:1625. [PMID: 39770466 PMCID: PMC11728764 DOI: 10.3390/ph17121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Hypericum perforatum, also known as St. John's Wort, pericon, or yellow grass, is known for its antidepressant potential. It could represent a natural alternative to current pharmacological antidepressant treatments, which have a high incidence of side effects in patients and therefore lead to early dropouts. Through a bibliographic revision of clinical trials and information collected from scientific articles during the first period of 2020, we aimed to evaluate whether its administration could be beneficial in the treatment of mild-to-moderate depression, with fewer side effects compared to synthetic drugs. Among the main components, hypericin and hyperforin have been related to the observed antidepressant activity; therefore, their possible mechanism of action was reviewed and highlighted. Furthermore, patients receiving Hypericum extracts were less likely to withdraw from studies because of adverse effects compared to those receiving older standard antidepressants. This review aims to provide suggestions for an alternative treatment of mild-to-moderate depression disorder under the supervision of a medical doctor, since, although it appears to be a potentially efficient treatment with a low presence of adverse effects in comparison to synthetic antidepressants, it might also interact with other medications and lead to therapeutic failures if misused for self-medication.
Collapse
Affiliation(s)
- María Carolina Otero
- School of Chemistry and Pharmacy, Faculty of Medicine, Andrés Bello University, Santiago 8370146, Chile
| | - Francisco Ceric
- Laboratory of Affective Neuroscience, Faculty of Psychology, Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Sebastián Miranda-Rojas
- Department of Chemical Sciences, Faculty of Exact Sciences, Andrés Bello University, Santiago 8370146, Chile;
- Center for Theoretical & Computational Chemistry (CQT&C), Department of Chemical Sciences, Faculty of Exact Sciences, Andrés Bello University, Santiago 8370146, Chile
| | - Carolina Carreño
- School of Medical Technology, Faculty of Medicine, Andrés Bello University, Santiago 8370146, Chile
| | - Rachelly Escares
- School of Medical Technology, Faculty of Medicine, Andrés Bello University, Santiago 8370146, Chile
| | - María José Escobar
- School of Medical Technology, Faculty of Medicine, Andrés Bello University, Santiago 8370146, Chile
| | - Chiara Saracini
- The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 8331150, Chile
| | - Ricardo Ramírez-Barrantes
- School of Medical Technology, Faculty of Medicine, Andrés Bello University, Viña del Mar 8370035, Chile;
| | - Felipe Gordillo-Fuenzalida
- Laboratory of Applied Microbiology, Center for Biotechnology of Natural Resources, Faculty of Agrarian and Forestry Sciences, Catholic University of Maule, Avda. San Miguel 3605, Talca 3460000, Chile;
| |
Collapse
|
2
|
Kholghi G, Arjmandi-Rad S, Zarrindast MR, Vaseghi S. St. John's wort (Hypericum perforatum) and depression: what happens to the neurotransmitter systems? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:629-642. [PMID: 35294606 DOI: 10.1007/s00210-022-02229-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
St. John's wort (Hypericum perforatum) is a herbaceous plant containing many bioactive molecules including naphthodianthrones, phloroglucinol derivatives, flavonoids, bioflavonoids, proanthocyanidins, and chlorogenic acid. Evidence has shown the therapeutic effects of St. John's wort and especially its two major active components, hyperforin and hypericin, on different psychiatric and mood disorders such as posttraumatic stress disorder (PTSD), attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), and anxiety disorders. St. John's wort also induces antidepressant effects. In this review study, we aimed to discuss the role of St. John's wort in modulating depression, with respect to the role of different neurotransmitter systems in the brain. We discussed changes in the neurotransmitter levels in depression, and following use of St. John's wort. It was concluded that changes in the function and level of neurotransmitters in depression are complex. Also, St. John's wort can induce inconsistent effects on neurotransmitter levels. We also found that glutamate and acetylcholine may be the most important neurotransmitters to study in future works, because the function of both neurotransmitters in depression is unclear. In addition, St. John's wort induces a dualistic modulation on the activity of cholinergic signaling, which can be an interesting topic for future studies.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
3
|
Nicolussi S, Drewe J, Butterweck V, Meyer Zu Schwabedissen HE. Clinical relevance of St. John's wort drug interactions revisited. Br J Pharmacol 2020; 177:1212-1226. [PMID: 31742659 PMCID: PMC7056460 DOI: 10.1111/bph.14936] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/01/2019] [Accepted: 11/10/2019] [Indexed: 12/22/2022] Open
Abstract
The first clinically relevant reports of preparations of St. John's wort (SJW), a herbal medicine with anti‐depressant effects, interacting with other drugs, altering their bioavailability and efficacy, were published about 20 years ago. In 2000, a pharmacokinetic interaction between SJW and cyclosporine caused acute rejection in two heart transplant patients. Since then, subsequent research has shown that SJW altered the pharmacokinetics of drugs such as digoxin, tacrolimus, indinavir, warfarin, alprazolam, simvastatin, or oral contraceptives. These interactions were caused by pregnane‐X‐receptor (PXR) activation. Preparations of SJW are potent activators of PXR and hence inducers of cytochrome P450 enzymes (most importantly CYP3A4) and P‐glycoprotein. The degree of CYP3A4 induction correlates significantly with the hyperforin content in the preparation. Twenty years after the first occurrence of clinically relevant pharmacokinetic drug interactions with SJW, this review revisits the current knowledge of the mechanisms of action and on how pharmacokinetic drug interactions with SJW could be avoided. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Simon Nicolussi
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Medical Research, Max Zeller Söhne AG, Romanshorn, Switzerland
| | | | | |
Collapse
|
4
|
Campos LV, Vieira VA, Silva LR, Jasmin J, Guerra MO, Peters VM, Sá RDCDSE. Rats treated with Hypericum perforatum during pregnancy generate offspring with behavioral changes in adulthood. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Kiasalari Z, Baluchnejadmojarad T, Roghani M. Hypericum Perforatum Hydroalcoholic Extract Mitigates Motor Dysfunction and is Neuroprotective in Intrastriatal 6-Hydroxydopamine Rat Model of Parkinson's Disease. Cell Mol Neurobiol 2016; 36:521-30. [PMID: 26119304 PMCID: PMC11482409 DOI: 10.1007/s10571-015-0230-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/20/2015] [Indexed: 12/31/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder with selective and progressive decline of nigral dopaminergic neurons. Hypericum perforatum L. (H. perforatum, St. John's wort) has been traditionally used for management of different disorders, especially mild-to-moderate depression. This study was conducted to evaluate the effect of H. perforatum extract against unilateral striatal 6-hydroxydopamine (6-OHDA) toxicity and to unmask some involved mechanisms. Intrastriatal 6-OHDA-lesioned rats were treated with H. perforatum hydroalcoholic extract at a dose of 200 mg/kg/day started 1 week pre-surgery for 1 week post-surgery. The extract attenuated apomorphine-induced rotational behavior, decreased the latency to initiate and the total time on the narrow beam task, lowered striatal level of malondialdehyde and enhanced striatal catalase activity and reduced glutathione content, normalized striatal expression of glial fibrillary acidic protein, tumor necrosis factor α with no significant effect on mitogen-activated protein kinase, lowered nigral DNA fragmentation, and prevented damage of nigral dopaminergic neurons with a higher striatal tyrosine hydroxylase immunoreactivity. These findings reveal the beneficial effect of H. perforatum via attenuation of DNA fragmentation, astrogliosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
6
|
Vieira VA, Campos LV, Silva LR, Guerra MO, Peters VM, Sá RDCS. Evaluation of postpartum behaviour in rats treated with Hypericum perforatum during gestation. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013000500012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Nikfarjam M, Parvin N, Assarzadegan N, Asghari S. The Effects of Lavandula Angustifolia Mill Infusion on Depression in Patients Using Citalopram: A comparison Study. IRANIAN RED CRESCENT MEDICAL JOURNAL 2013; 15:734-9. [PMID: 24578844 PMCID: PMC3918201 DOI: 10.5812/ircmj.4173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/21/2013] [Accepted: 06/11/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many herbs have been used to treat psychiatric disorders including anxiety and depression in traditional medicine. OBJECTIVES This study was carried out to determine the effect of using Lavandula angustifilia infusion on depression in patients taking Citalopram. PATIENTS AND METHODS Among all patients referred to the Hajar Hospital psychiatric clinic, Shahrekord, Iran, 80 patients who met the criteria of major depression according to the structured interviews and the Hamilton questionnaire for Depression were included in the study. They were randomly assigned into two groups of experimental treatment group and standard treatment group at this study. In standard treatment group, the patients were given Citalopram 20 mg. In experimental treatment group, the patients took 2 cups of the infusion of 5 g dried Lavandula angustifilia in addition to tablet Citalopram 20 mg twice a day. The patients were followed up for four and eight weeks of the study onset using Hamilton Scale questionnaire and treatment side effects form. Data were analyzed using student t-test, pair t-test and chi square. RESULTS After four weeks of the trial onset, the mean depression score according to the Hamilton Scale for Depression was 17.5 ± 3.5 in the standard treatment group and 15.2 ± 3.6 in the experimental treatment group (P < 0.05). After eight weeks, it was 16.8±4.6 and 14.8±4 respectively (P < 0.01). In addition, the most commonly observed adverse effects were nausea (12.8 %) and confusion (10%). In terms of side effects, there were no significant differences between two groups. CONCLUSIONS Considering the results of this study, Lavandula angustifilia infusion has some positive therapeutic effects on depressed patients most importantly decreases mean depression score and might be used alone or as an adjunct to other anti-depressant drugs.
Collapse
Affiliation(s)
- Masoud Nikfarjam
- Department of Psychiatry, Cellular and Molecular Research Centre, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
| | - Neda Parvin
- Herbal Research Center, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
- Corresponding Author: Neda Parvin, Herbal Research Center, Shahrekord University of Medical Sciences, Shahrekord, IR Iran, Tel/Fax: +98-3812220043, E-mail:
| | | | - Shabnam Asghari
- Department of Family Medicine Faculty of Medicine, Memorial university of Newfoundland, Canada
| |
Collapse
|
8
|
Mañero FJG, Algar E, Martín Gómez MS, Saco Sierra MD, Solano BR. Elicitation of secondary metabolism in Hypericum perforatum by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. PHARMACEUTICAL BIOLOGY 2012; 50:1201-1209. [PMID: 22900596 DOI: 10.3109/13880209.2012.664150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CONTEXT Hypericum perforatum L. (Guttiferae) appears as an alternative treatment to mild and moderate depression and been traditionally used as a health enhancer based on the phytochemicals hyperforin and hypericin. However, field grown medicinal plants show variable levels of phytopharmaceuticals depending on environmental conditions. Elicitation is a good strategy to trigger secondary metabolism. OBJECTIVE This study explored the ability of 6 rhizobacterial strains to trigger secondary metabolism in H. perforatum seedlings and molecular elicitors from the most effective strain N5.18 were tested in shoot cultures. MATERIALS AND METHODS Hypericin and pseudohypericin were determined on seedlings and shoot cultures by HPLC. Three putative elicitors from bacterial culture media were assayed in three different concentrations. RESULTS Strain N5.18 significantly increased hypericin up to 1.2 ppm and pseudohypericin up to 3.4 ppm, over controls (0.3 and 2.5 ppm, respectively) when delivered to seedlings. In shoot cultures, only pseudohypericin was detected (168.9 ppm) and significant increases were observed under the different elicitors, reaching values of 3164.8 ppm with small elicitors in the middle concentration. DISCUSSION AND CONCLUSION Secondary metabolism in plants is highly inducible due to its role in plant communication and defense. Our findings demonstrate that some beneficial bacterial strains are able to trigger secondary metabolism in H. perforatum plants when delivered through the roots and bacterial determinants released to culture media are able to reproduce the effect in shoot cultures. Therefore, these elicitors have great potential to enhance phytopharmaceutical production.
Collapse
|
9
|
do Amaral JF, Silva MIG, de Aquino Neto MR, Moura BA, de Carvalho AMR, Vasconcelos PF, Barbosa Filho JM, Gutierrez SJC, Vasconcelos SMM, Macêdo DS, de Sousa FCF. Antidepressant-like effect ofbis-eugenol in the mice forced swimming test: evidence for the involvement of the monoaminergic system. Fundam Clin Pharmacol 2012; 27:471-82. [DOI: 10.1111/j.1472-8206.2012.01058.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 05/19/2012] [Accepted: 06/11/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Jeferson Falcão do Amaral
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Maria Izabel Gomes Silva
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Manuel Rufino de Aquino Neto
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Brinell Arcanjo Moura
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Alyne Mara Rodrigues de Carvalho
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Patrícia Freire Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - José Maria Barbosa Filho
- Laboratory of Pharmaceutics Technology; Federal University of Paraíba; Cidade Universitária, Castelo Branco; CEP: 58051-900; João Pessoa - PB; Brazil
| | - Stanley Juan Chavez Gutierrez
- Laboratory of Pharmaceutics Technology; Federal University of Paraíba; Cidade Universitária, Castelo Branco; CEP: 58051-900; João Pessoa - PB; Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Danielle Silveira Macêdo
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| | - Francisca Cléa Florenço de Sousa
- Department of Physiology and Pharmacology, Faculty of Medicine; Federal University of Ceará; Rua Cel. Nunes de Melo 1127; CEP: 60431-270; Fortaleza; Brazil
| |
Collapse
|