1
|
Wang H, Li Y, Zhang L, Lu M, Li C, Li Y. Anti-Inflammatory Lipid Mediators from Polyunsaturated Fatty Acids: Insights into their Role in Atherosclerosis Microenvironments. Curr Atheroscler Rep 2025; 27:48. [PMID: 40198469 DOI: 10.1007/s11883-025-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Inflammation has become a major residual risk factor for atherosclerotic cardiovascular disease (ASCVD). Certain lipid mediators, known as specialized proresolving mediators (SPMs), are mainly derived from polyunsaturated fatty acids (PUFAs) and can promote inflammation resolution while maintaining host autoimmunity. This review investigates the synthesis and ligand action pathways of these lipid mediators, as well as their regulatory mechanisms in the microenvironment of atherosclerotic plaques. Furthermore, it explores their clinical therapeutic potential, aiming to offer new insights into novel anti-inflammatory drug targets for the treatment of ASCVD. RECENT FINDINGS Reduced levels of SPMs are associated with the progression of atherosclerosis. SPMs inhibit inflammatory responses in the plaque microenvironment by limiting immune cell infiltration, reducing oxidative stress, and promoting the clearance of apoptotic cells, all of which contribute to plaque stabilization. Tyrosine-protein kinase Mer (MerTK), TRIF-related adaptor molecule (TRAM), and high mobility group box 1 (HMGB1) play crucial roles in the modulation of SPM production. Clinical use of ω-3 PUFAs has been shown to reduce the incidence of fatal cardiovascular events. Furthermore, aspirin not only initiates the synthesis of specific SPMs but also extends their activity within the body. The enhanced production of SPMs promotes inflammation resolution in the plaque microenvironment without inducing immunosuppression. This characteristic highlights MerTK, TRAM, and HMGB1 as potential targets for the development of anti-inflammatory drugs. Investigating targets and compounds that enhance the production of SPMs presents a promising strategy for developing future anti-inflammatory agents.
Collapse
Affiliation(s)
- Hongqin Wang
- Post-doctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Lei Zhang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Chen CC, Lin HL, Guo JH, Chen X, Cho DY, Liao WL, Hsieh CL. Effect of astragalus membranaceus on neurological function in acute aneurysmal subarachnoid hemorrhage patients with high inflammation: A preliminary randomized, double-blind, placebo-controlled clinical trial. J Tradit Complement Med 2024; 14:635-643. [PMID: 39850599 PMCID: PMC11752111 DOI: 10.1016/j.jtcme.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Accepted: 04/07/2024] [Indexed: 01/25/2025] Open
Abstract
Background and aim Astragalus membranaceus (AM) is a traditional Chinese herb. Our previous study revealed that AM can enhance neurological function in patients with acute intracerebral hemorrhage. The aim of this study was to investigated the effects of AM on patients with acute aneurysmal subarachnoid hemorrhage (aSAH). Experimental procedure Eighty-eight patients experiencing acute aSAH were randomly allocated to either the treatment group (TG) comprising 44 patients, who received 3 g of AM orally thrice daily for 14 days, or the control group (CG) with 44 patients, who received 3 g of a placebo. Results Eighty-three patients (41 in CG and 42 in TG) completed the trial. Stratified analyses revealed serum interleukin-6 (IL-6) median ≥7.28 pg/mL at baseline. The percentage of good GOS scores (GOS 4 or 5) at two weeks (W2) and four weeks (W4) was significantly higher in TG than in CG (W2: 35.3 % vs. 7.7 %, p = 0.042; W4: 62.5 % vs. 30.8 %, p = 0.044). Moreover, a higher percentage of Barthel index scores (>60) was observed in TG than in CG at W2 (35.3 % vs. 7.7 %, p = 0.042) after AM or placebo administration. Conclusion Administering AM for 14 days has shown potential in enhancing neurological function four weeks post-aSAH onset, especially in patients with a serum IL-6 level median ≥7.28 pg/mL. Therefore, further research is warranted to explore the anti-inflammatory role of AM. However, this study's limitations include a small sample size and the single-center design, signifying its status as a preliminary investigation.
Collapse
Affiliation(s)
- Chun-Chung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Hung-Lin Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Hung Guo
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Feng Y, Hao F. Advances in natural polysaccharides in Alzheimer's disease and Parkinson's disease: Insights from the brain-gut axis. Trends Food Sci Technol 2024; 153:104678. [DOI: 10.1016/j.tifs.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Han X, Qin Y, Mei C, Jiao F, Khademolqorani S, Nooshin Banitaba S. Current trends and future perspectives of stroke management through integrating health care team and nanodrug delivery strategy. Front Cell Neurosci 2023; 17:1266660. [PMID: 38034591 PMCID: PMC10685387 DOI: 10.3389/fncel.2023.1266660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Stroke is accounted as the second-most mortality and adult disability factor in worldwide, while causes the bleeding promptly and lifetime consequences. The employed functional recovery after stroke is highly variable, allowing to deliver proper interventions to the right stroke patient at a specific time. Accordingly, the multidisciplinary nursing team, and the administrated drugs are major key-building-blocks to enhance stroke treatment efficiency. Regarding the healthcare team, adequate continuum of care have been declared as an integral part of the treatment process from the pre-hospital, in-hospital, to acute post-discharge phases. As a curative perspective, drugs administration is also vital in surviving at the early step and reducing the probability of disabilities in later. In this regard, nanotechnology-based medicinal strategy is exorbitantly burgeoning. In this review, we have highlighted the effectiveness of current clinical care considered by nursing teams to treat stroke. Also, the advancement of drugs through synthesis of miniaturized nanodrug formations relating stroke treatment is remarked. Finally, the remained challenges toward standardizing the healthcare team and minimizing the nanodrugs downsides are discussed. The findings ensure that future works on normalizing the healthcare nursing teams integrated with artificial intelligence technology, as well as advancing the operative nanodrugs can provide value-based stroke cares.
Collapse
Affiliation(s)
- Xuelu Han
- Nursing Clinic, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Yingxin Qin
- Department of Nursing, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Chunli Mei
- Nursing College, Beihua University, Jilin, China
| | - Feitong Jiao
- Nursing Training Center, School of Nursing, Jilin Medical University, Jilin, China
| | - Sanaz Khademolqorani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
- Emerald Experts Laboratory, Isfahan Science and Technology Town, Isfahan, Iran
| | - Seyedeh Nooshin Banitaba
- Emerald Experts Laboratory, Isfahan Science and Technology Town, Isfahan, Iran
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Ren J, Fang H, Yang L, Sun H, Song H, Yan G, Han Y, Wang X. Fecal metabolomics analysis for deciphering the lipid-lowering effect of Qizhi capsule on high-fat feed induced hyperlipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116270. [PMID: 36806341 DOI: 10.1016/j.jep.2023.116270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qizhi capsule (QZC), a Chinese patent drug, has been utilized to treat hyperlipidemia. AIM OF STUDY The present study aims to investigate the lipid-lowering effect of QZC, as well as the mechanism of action for treating hyperlipidemia. MATERIALS AND METHODS High-fat diet (HFD) induced hyperlipidemia rats were administrated with different doses of QZC for 28 days, and atorvastatin calcium tablets was used as the positive control. Serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were used to evaluate the effectiveness of QZC treatment. The metabolic profiles of feces were analyzed by UPLC-MS-based metabolomics approach coupled with multivariate data analysis. RESULTS The levels of serum TC, TG, LDL-C, and HDL-C were significantly reversed in QZC treatment groups, showing a similar or even better treatment effect compared with the atorvastatin calcium group. Thirty-two potential fecal biomarkers related to hyperlipidemia were identified. QZC could partially recover the disturbed metabolic pathways of alpha-linolenic acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. Meanwhile, the signal pathways of regulation of lipid metabolism by peroxisome proliferator-activated receptor α (PPARα), PPARα activates gene expression, and transcriptional regulation of white adipocyte differentiation can be also regulated by QZC. CONCLUSION The lipid-lowering effect of QZC was confirmed by both serum biochemistry and metabolomics analysis. The beneficial effects of QZC were mainly attributed to the correction of metabolic disorders and the maintenance of the dynamic balance of metabolites.
Collapse
Affiliation(s)
- Junling Ren
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Heng Fang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Hongwei Song
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
6
|
Yang Q, Liu J, Li T, Lyu S, Liu X, Du Z, Shang X, Zhang T. Integrated Microbiome and Metabolomic Analysis Reveal the Repair Mechanisms of Ovalbumin on the Intestine Barrier of Colitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37161945 DOI: 10.1021/acs.jafc.2c08897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The development and progression of colitis would detrimentally destroy the intestine barrier. However, there remains a paucity of evidence on whether ovalbumin (OVA) can be used as a nutritional food protein to repair the intestinal barrier. In this study, the repairing mechanism of OVA on intestinal barrier was thoroughly investigated by gut microbiota and untargeted metabolomics techniques. The findings demonstrated that OVA reduced intestinal permeability and restored mucin (0.75 ± 0.06) and tight junction (TJ) protein (0.67 ± 0.14) expression in colitis mice caused by 3% dextran sulfate sodium (DSS). In addition, the inflammation response and oxidative stress were also attenuated. The intake of OVA upregulated the abundance of Lactobacillaceae (7.60 ± 3.34%) and Akkermansiaceae (10.39 ± 5.97%). Furthermore, OVA upregulated the abundance of inosine (6.06 ± 0.36%), putrescine (4.14 ± 0.20%), and glycocholic acid (5.59 ± 0.23%) in colitis mice through ATP binding cassette (ABC) transporters and bile secretion pathways. In summary, our findings revealed that OVA could maintain intestinal health, which may provide crucial insights for preventing and treating intestinal diseases.
Collapse
Affiliation(s)
- Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
7
|
Wang J, Liu YM, Hu J, Chen C. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease. Front Pharmacol 2023; 14:1109576. [PMID: 36895942 PMCID: PMC9989041 DOI: 10.3389/fphar.2023.1109576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|
8
|
Liu H, Zhu L, Chen L, Li L. Therapeutic potential of traditional Chinese medicine in atherosclerosis: A review. Phytother Res 2022; 36:4080-4100. [PMID: 36029188 DOI: 10.1002/ptr.7590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Atherosclerosis is the onset of endothelial cell damage and is characterized by abnormal accumulation of fibrinogen and lipid in large and middle arteries. Recent researches indicate that traditional Chinese medicine including Notoginseng Radix et Rhizoma, Astragali Radix, Salviae Miltiorrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Fructus Crataegi, Glycyrrhizae Radix et Rhizoma, Polygoni Multiflori Radix, Fructus Lycii, and Coptidis Rhizoma have therapeutic effects on atherosclerosis. Furthermore, the pharmacological roles of these kinds of traditional Chinese medicine in atherosclerosis refer to endothelial function influences, cell proliferation and migration, platelet aggregation, thrombus formation, oxidative stress, inflammation, angiogenesis, apoptosis, autophagy, lipid metabolism, and the gut microbiome. Traditional Chinese medicine may serve as potential and effective anti-atherosclerosis drugs. However, a critical study has shown that Notoginseng Radix et Rhizoma may also have toxic effects including pustules, fever, and elevate circulating neutrophil count. Further high-quality studies are still required to determine the clinical safety and efficacy of traditional Chinese medicine and its active ingredients.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
Jiang CL, Li XY, Shen WD, Pan LH, Li QM, Luo JP, Zha XQ. Bioactive polysaccharides and their potential health benefits in reducing the risks of atherosclerosis: A review. J Food Biochem 2022; 46:e14337. [PMID: 35945814 DOI: 10.1111/jfbc.14337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis is a kind of lipid-driven chronic inflammatory disease of arteries and is the principal pathological basis of life-threatening cardiovascular disease events, such as strokes and heart attacks. Clinically, statins are the most commonly prescribed drugs for the treatment of atherosclerosis, but prolonged use of these drugs exhibit many adverse reactions and have limited efficacy. Polysaccharides are important natural biomacromolecules widely existing in plants, animals, microorganisms and algae. They have drawn considerable attention worldwide due to their multiple healthy functions, along with their non-toxic property. Importantly, a growing number of studies have demonstrated that bioactive polysaccharides exhibit prominent efficiency in controlling atherosclerotic risk factors like hyperlipemia, hypertension, oxidative stress, and inflammation. In recent decades, various bioactive polysaccharides with different structural features and anti-atherosclerotic potential from natural sources have been isolated, purified, and characterized. The aim of this review is to focus on the research progress of natural polysaccharides in reducing the risks of atherosclerosis based on evidence of in vitro and in vivo studies from 1966 to 2022. PRACTICAL APPLICATIONS: In the future, it is still necessary to strengthen the research on the development and mechanism of polysaccharides with anti-atherosclerotic potential. These anti-atherosclerotic polysaccharides with different structural characteristics and physiochemical properties from different sources will constitute a huge source of materials for future applications, especially in functional foods and drugs. The information summarized here may serve as useful reference materials for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Chao-Li Jiang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Wen-Di Shen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, People's Republic of China
| |
Collapse
|
10
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
11
|
P Karagodin V, I Summerhill V, Yet SF, N Orekhov A. The anti-atherosclerotic effects of natural polysaccharides: from phenomena to the main mechanisms of action. Curr Pharm Des 2022; 28:1823-1832. [PMID: 35585810 DOI: 10.2174/1381612828666220518095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Polysaccharides (PSs) of plant origin have a variety of biological activities, anti-atherosclerotic including, but their use in atherosclerosis therapy is hindered by insufficient knowledge on the cellular and molecular mechanisms of action. In this review, the influence of several natural PSs on the function of macrophages, viral activity, and macrophage cholesterol metabolism has been discussed considering the tight interplay between these aspects in the pathogenesis of atherosclerosis. The anti-atherosclerotic activities of natural PSs related to other mechanisms have been also explored. Directions for further research of anti-atherosclerotic effects of natural PSs have been outlined, the most promising of which can be nutrigenomic studies.
Collapse
Affiliation(s)
- Vasily P Karagodin
- Department of Commodity Research and Expertise, Plekhanov Russian University of Economics, 36 Stremyanny Pereulok, 117997 Moscow, Russia
| | - Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan R.O.C
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia.,Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| |
Collapse
|
12
|
Dong Y, Zheng Y, Zhu L, Li T, Guan Y, Zhao S, Wang Q, Wang J, Li L. Hua-Tan-Sheng-Jing Decoction Treats Obesity With Oligoasthenozoospermia by Up-Regulating the PI3K-AKT and Down-Regulating the JNK MAPK Signaling Pathways: At the Crossroad of Obesity and Oligoasthenozoospermia. Front Pharmacol 2022; 13:896434. [PMID: 35559247 PMCID: PMC9086321 DOI: 10.3389/fphar.2022.896434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oligoasthenozoospermia is the leading cause of male infertility, seriously affecting men's health and increasing the societal medical burden. In recent years, obesity-related oligoasthenozoospermia has attracted increased attention from researchers to find a cure. This study aimed to evaluate the efficacy of Hua-Tan-Sheng-Jing decoction (HTSJD) in treating obesity with oligoasthenozoospermia, determine its active ingredients and identify its mechanism of action. Methods: The ingredients of HTSJD were determined by combining the ultra-performance liquid chromatography with mass spectrometry (UPLC-MS/MS) and systems pharmacology approach. The common pathogenesis of obesity and oligoasthenozoospermia and the potential mechanism of HTSJD against obesity with oligoasthenozoospermia were obtained through target fishing, network construction, and enrichment analyses. Further, molecular docking of the key ingredients with the upstream receptors of the key signaling pathways of the potential mechanism was used to predict their affinity. Finally, high-fat-induced obesity with oligoasthenozoospermia rat model was constructed to determine the effects of HTSJD on semen concentration, sperm motility, body weight, and serum lipid metabolism. The key proteins were validated by immunohistochemistry (IHC). Results: A total of 70 effective components and 847 potential targets of HTSJD (H targets) were identified, of which 743 were common targets related to obesity and oligoasthenozoospermia (O-O targets) mainly enriched in the pathways related to inflammation, oxidative stress and hormone regulation. Finally, 143 common targets (H-O-O targets) for HTSJD against obesity with oligoasthenozoospermia were obtained. Combining the hub genes and the results of Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of H-O-O targets, PI3K-AKT and MAPK signaling pathways were identified as the key pathways. Molecular docking results showed that Diosgenin, Kaempferol, Quercetin, Hederagenin, Isorhamnetin may act on the related pathways by docking EGFR, IGF1R and INSR. The animal-based in vivo experiments confirmed that HTSJD improves the sperm quality of high-fat diet-fed rats by reducing their body weight and blood lipid levels, influencing the PI3K-AKT and MAPK signaling pathways and altering the corresponding protein expressions. Conclusion: HTSJD treats obesity with oligoasthenozoospermia by up-regulating the PI3K-AKT signaling pathway and down-regulating the MAPK signaling pathway, which are at the crossroad of obesity and oligoasthenozoospermia.
Collapse
Affiliation(s)
- Yang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shipeng Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X, Kai G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153918. [PMID: 35104756 DOI: 10.1016/j.phymed.2021.153918] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND With the rising age of the global population, the incidence rate of cardiovascular and cerebrovascular diseases (CCVDs) is increasing, which causes serious public health burden. The efforts for new therapeutic approaches are still being sought since the treatment effects of existing therapies are not quite satisfactory. Chinese traditional medicine proved to be very efficient in the treatment of CCVDs. Well described and established in Chinese medicine, Astragali Radix, has been commonly administered in the prophylaxis and cure of CCVDs for thousands of years. PURPOSE This review summarized the action mode and mechanisms of Astragali Radix phytochemicals on CCVDs, hoping to provide valuable information for the future application, development and improvement of Astragali Radix as well as CCVDs treatment. METHODS A plenty of literature on biological active ingredients of Astragali Radix used for CCVDs treatment were retrieved from online electronic PubMed and Web of Science databases. RESULTS This review highlighted the effects of five main active components in Astragali Radix including astragaloside Ⅳ, cycloastragenol, astragalus polysaccharide, calycosin-7-O-β-d-glucoside, and calycosin on CCVDs. The mechanisms mainly involved anti-oxidative damage, anti-inflammatory, and antiapoptotic through signaling pathways such as PI3K/Akt, Nrf2/HO-1, and TLR4/NF-κB pathway. In addition, the majority active constituents in AR have no obvious toxic side effects. CONCLUSION The main active components of Astragali Radix, especially AS-IV, have been extensively summarized. It has been proved that Astragali Radix has obvious therapeutic effects on various CCVDs, including myocardial and cerebral ischemia, hypertension, atherosclerosis, cardiac hypertrophy, chronic heart failure. CAG possesses anti-ischemia activity without toxicity, indicating a worthy of further development. However, high-quality clinical and pharmacokinetic studies are required to validate the current studies.
Collapse
Affiliation(s)
- Man Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chongyi Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Daokun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Xianming Lin
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
14
|
Singh S, Changkija S, Mudgal R, Ravichandiran V. Bioactive components to inhibit foam cell formation in atherosclerosis. Mol Biol Rep 2022; 49:2487-2501. [PMID: 35013861 DOI: 10.1007/s11033-021-07039-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The production of lipid-laden cells in macrophages after significant ingestion of oxidized low-density lipoprotein is considered the most critical phase in the creation of atherosclerotic lesions, which is known as foam cell formation. Targeting foam cell development to find a potential therapeutic strategy for the management of atherosclerosis has yielded numerous promising outcomes. Multiple variables influence foam cell growth, including scavenger receptor expression, cholesterol transporter expression acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. Plants used during herbal therapy have been shown to assist with a variety of ailments. RESULT In this study, we found medicinal plants and their bioactive components suppress foam cell formation in a variety of ways; some inhibit cholesterol transporter and lectin-like oxidized low-density lipoprotein receptor-1 upregulation, while others inhibit the function of acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. CONCLUSION Recent study findings related to the synthesis of the new active component from plant sources by focusing on the typical process involved in the generation of foam cells. We're also looking at using a cellular target-based therapeutic approach to generate novel plant-based medications for the cure of atherosclerosis.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India.
| | - Senti Changkija
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| |
Collapse
|
15
|
AlMatar M, Makky EA, Ramli ANM, Kafkas NE, Köksal F. Polysaccharides to combat viruses (Covid-19) and microbes: New updates. Curr Mol Pharmacol 2022; 15:803-814. [PMID: 35023463 DOI: 10.2174/1874467215666220112150332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022]
Abstract
COVID-19, which is speedily distributed across the world and presents a significant challenge to public health, is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following MERS coronavirus (MERS-CoV) and SARS, this is the third severe coronavirus outbreak in less than 20 years. To date, there are no exact agents and vaccines available for the treatment of COVID-19 that are clinically successful. Antimicrobial medications are effective in controlling infectious diseases. However, the extensive use of antibiotics makes microbes more resistant to drugs and demands novel bioactive agents' development. Polysaccharides are currently commonly used in the biomedical and pharmaceutical industries for their remarkable applications. Polysaccharides appear to have a wide range of anti-virus (anti-coronavirus) and antimicrobial applications. Polysaccharides are able to induce bacterial cell membrane disruption as they demonstrate potency in binding onto the surfaces of microbial cells. Here, the antiviral mechanisms of such polysaccharides and their success in the application of antiviral infections are reviewed. Additionally, this report provides a summary of current advancements of well-recognized polysaccharides as antimicrobial and anti-biofilm agents.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Education and Art, Department of Biology, Sohar University, Sohar, 311, Sultanate of Oman
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | | | - Fatih Köksal
- Faculty of Medicine, Çukurova University, Adana, 01330, Turkey
| |
Collapse
|
16
|
He YF, Mai CT, Pan HD, Liu L, Zhou H, Xie Y. Targeting immunometabolism by active ingredients derived from traditional Chinese medicines for treatment of rheumatoid arthritis. CHINESE HERBAL MEDICINES 2021; 13:451-460. [PMID: 36119361 PMCID: PMC9476673 DOI: 10.1016/j.chmed.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis (RA), the most common inflammatory arthropathy word wild, is a systemic autoimmune disease that mainly affects the synovium of joints with a high disability rate. Metabolic mis-regulation has emerged as a fundamental pathogenesis of RA linked to immune cell dysfunction, while targeting immunometabolism provides a new and effective approach to regulate the immune responses and thus alleviate the symptom of RA. Recently, natural active compounds from traditional Chinese medicines (TCMs) have potential therapeutic effects on RA and regulating immunometabolism. In this review, in addition to updating the connection between cellular metabolism and cell function in immune cells of RA, we summarized that the anti-inflammatory mechanisms of the potential natural compounds from TCM by targeting metabolic reprogramming of immune cells, and discusses them as a rich resource for providing the new potential paradigm for the treatment of RA.
Collapse
Affiliation(s)
| | | | - Hu-dan Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| |
Collapse
|
17
|
Kotlyarov S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:3334. [PMID: 33805156 PMCID: PMC8037621 DOI: 10.3390/ijms22073334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the important medical and social problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place after the liver, which indicates the important role of the carrier in lung function. The participation of the transporter in the development of COPD consists in provision of lipid metabolism, regulation of inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous clinical course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
18
|
Li K, Cui LJ, Cao YX, Li SY, Shi LX, Qin XM, Du YG. UHPLC Q-Exactive MS-Based Serum Metabolomics to Explore the Effect Mechanisms of Immunological Activity of Astragalus Polysaccharides With Different Molecular Weights. Front Pharmacol 2021; 11:595692. [PMID: 33390982 PMCID: PMC7774101 DOI: 10.3389/fphar.2020.595692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Astragalus polysaccharides (APS) have a wide range of biological activities. Most researchers discuss total APS as the main research object. However, because the relative molecular weight of APS has a wide distribution, in-depth studies on the mechanisms of the biological activity of notable molecules are limited. For example, the relationship between the immunomodulatory effect of APS and its relative molecular weight has not been clearly defined. Therefore, in this paper, we separated and obtained APS of different molecular weights by ultrafiltration technology and then constructed a mouse cyclophosphamide-induced immunosuppression model to investigate the immune activity of APS of different molecular weights. The immune enhancement mechanism of APS was explored by examining changes in routine blood indicators, body weight, immune organs, and differential metabolites in mouse serum. Results showed that APS-I (molecular weight, >2,000 kDa), APS-II (molecular weight, 1.02 × 104 Da) and APS-III (molecular weight, 286 Da) could increase the number of immune cells in mouse serum and improve immune organ damage to varying degrees. Among the samples obtained, APS-II showed the best effects. Compared with those in the blank group, 29 metabolites determined by UHPLC Q-Exactive MS in the serum of the model group changed remarkably, and APS-I, APS-II, and APS-III respectively restored 13, 25, and 19 of these metabolites to normal levels. Metabolomics analysis revealed that APS-II is mainly responsible for the immunomodulatory activity of APS. Metabolomics analysis revealed that the mechanisms of this specific molecule may involve the regulation of phenylalanine metabolism, cysteine and methionine metabolism, tricarboxylic acid cycle (TCA cycle) and arginine and proline metabolism.
Collapse
Affiliation(s)
- Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Lian-Jie Cui
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Yu-Xin Cao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Shu-Ying Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Li-Xia Shi
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yu-Guang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Nicotinamide Prevents Apolipoprotein B-Containing Lipoprotein Oxidation, Inflammation and Atherosclerosis in Apolipoprotein E-Deficient Mice. Antioxidants (Basel) 2020; 9:antiox9111162. [PMID: 33233455 PMCID: PMC7700561 DOI: 10.3390/antiox9111162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
The potential of nicotinamide (NAM) to prevent atherosclerosis has not yet been examined. This study investigated the effect of NAM supplementation on the development of atherosclerosis in a mouse model of the disease. The development of aortic atherosclerosis was significantly reduced (NAM low dose: 45%; NAM high dose: 55%) in NAM-treated, apolipoprotein (Apo)E-deficient mice challenged with a Western diet for 4 weeks. NAM administration significantly increased (1.8-fold) the plasma concentration of proatherogenic ApoB-containing lipoproteins in NAM high-dose (HD)-treated mice compared with untreated mice. However, isolated ApoB-containing lipoproteins from NAM HD mice were less prone to oxidation than those of untreated mice. This result was consistent with the decreased (1.5-fold) concentration of oxidized low-density lipoproteins in this group. Immunohistochemical staining of aortas from NAM-treated mice showed significantly increased levels of IL-10 (NAM low-dose (LD): 1.3-fold; NAM HD: 1.2-fold), concomitant with a significant decrease in the relative expression of TNFα (NAM LD: −44%; NAM HD: −57%). An improved anti-inflammatory pattern was reproduced in macrophages cultured in the presence of NAM. Thus, dietary NAM supplementation in ApoE-deficient mice prevented the development of atherosclerosis and improved protection against ApoB-containing lipoprotein oxidation and aortic inflammation.
Collapse
|
20
|
Wang D, Hiebl V, Xu T, Ladurner A, Atanasov AG, Heiss EH, Dirsch VM. Impact of natural products on the cholesterol transporter ABCA1. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112444. [PMID: 31805338 DOI: 10.1016/j.jep.2019.112444] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In different countries and areas of the world, traditional medicine has been and is still used for the treatment of various disorders, including chest pain or liver complaints, of which we now know that they can be linked with altered lipid and cholesterol homeostasis. As ATP-binding cassette transporter A1 (ABCA1) plays an essential role in cholesterol metabolism, its modulation may be one of the molecular mechanisms responsible for the experienced benefit of traditional recipes. Intense research activity has been dedicated to the identification of natural products from traditional medicine that regulate ABCA1 expression. AIMS OF THE REVIEW This review surveys natural products, originating from ethnopharmacologically used plants, fungi or marine sources, which influence ABCA1 expression, providing a reference for future study. MATERIALS AND METHODS Information on regulation of ABCA1 expression by natural compounds from traditional medicine was extracted from ancient and modern books, materia medica, and electronic databases (PubMed, Google Scholar, Science Direct, and ResearchGate). RESULTS More than 60 natural compounds from traditional medicine, especially traditional Chinese medicine (TCM), are reported to regulate ABCA1 expression in different in vitro and in vivo models (such as cholesterol efflux and atherosclerotic animal models). These active compounds belong to the classes of polyketides, terpenoids, phenylpropanoids, tannins, alkaloids, steroids, amino acids and others. Several compounds appear very promising in vivo, which need to be further investigated in animal models of diseases related to ABCA1 or in clinical studies. CONCLUSION Natural products from traditional medicine constitute a large promising pool for compounds that regulate ABCA1 expression, and thus may prevent/treat diseases related to cholesterol metabolism, like atherosclerosis or Alzheimer's disease. In many cases, the molecular mechanisms of these natural products remain to be investigated.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Verena Hiebl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, 05-552, Jastrzębiec, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchevstr., 1113, Sofia, Bulgaria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
21
|
LongShengZhi Capsule Reduces Established Atherosclerotic Lesions in apoE-Deficient Mice by Ameliorating Hepatic Lipid Metabolism and Inhibiting Inflammation. J Cardiovasc Pharmacol 2020; 73:105-117. [PMID: 30540683 DOI: 10.1097/fjc.0000000000000642] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disorders of lipid metabolism and inflammation play an important role in atherosclerosis. LongShengZhi (LSZ) capsule, a Chinese herbal medicine, has been used for treatment of patients with vascular diseases for many years. In this article, we determined the effect of LSZ on the progression of established atherosclerotic lesions in apoE-deficient (apoE) mice. ApoE mice were prefed high-fat diet (HFD) for 8 weeks to induce atherosclerosis, then started with LSZ treatment contained in HFD for 10 weeks. Although LSZ had little effect on HFD-induced hypercholesterolemia, it substantially reduced en face and sinus aortic lesions. The reduction of lesions was associated with reduced macrophage/foam cell accumulation by activating ABCA1/ABCG1 expression. LSZ maintained the integrity of arterial wall by increasing collagen or smooth muscle cell content and inhibiting cell apoptosis. LSZ also attenuated HFD-induced fatty liver by down-regulating expression of lipogenic and cholesterol synthetic genes while activating expression of triglyceride catabolism genes. Moreover, LSZ demonstrated potent anti-inflammatory effects. In vivo, LSZ reduced serum TNF-α levels, infiltration of neutrophils, Kupffer cells, and expression of inflammatory cytokines in the liver. In vitro, it inhibited lipopolysaccharide or palmitate-induced expression of inflammatory cytokines in macrophages. Therefore, LSZ reduces atherosclerosis by ameliorating hepatic lipid metabolism and inhibiting inflammation.
Collapse
|
22
|
Hsieh CH, Lin CY, Hsu CL, Fan KH, Huang SF, Liao CT, Lee LY, Ng SK, Yen TC, Chang JTC, Lin JR, Wang HM. Incorporation of Astragalus polysaccharides injection during concurrent chemoradiotherapy in advanced pharyngeal or laryngeal squamous cell carcinoma: preliminary experience of a phase II double-blind, randomized trial. J Cancer Res Clin Oncol 2020; 146:33-41. [PMID: 31728618 DOI: 10.1007/s00432-019-03033-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/18/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Concurrent chemoradiotherapy (CCRT) is one of the standard treatments for patients with advanced head and neck squamous cell carcinoma (HNSCC). However, CCRT may lead to decreased quality of life (QoL) and treatment compliance. This study aimed to determine the effects of PG2 (Astragalus polysaccharides) injection on CCRT-associated adverse events (AEs) and patients' compliance with the CCRT course. METHODS In this phase II double-blind randomized placebo-controlled trial, PG2 injection (sterile powder form) or placebo was administrated three times per week in parallel with CCRT to patients with HNSCC. The chemotherapy regimen included 50 mg/m2 cisplatin every 2 weeks with daily tegafur-uracil (300 mg/m2) and leucovorin (60 mg/day). RESULTS The study was terminated prematurely due to the successful launch of a newly formulated PG2 injection (lyophilized form). A total of 17 patients were enrolled. The baseline demographics and therapeutic compliance were comparable between the CCRT/PG2 and CCRT/placebo groups. During CCRT, severe treatment-associated AEs were less frequent in the CCRT/PG2 group than in the CCRT/placebo group. Furthermore, less QoL fluctuations from the baseline during CCRT were noted in the CCRT/PG2 group than in the CCRT/placebo group, with a significant difference in the pain, appetite loss, and social eating behavior. The tumor response, disease-specific survival and overall survival did not differ between the two groups. CONCLUSION This preliminary study demonstrated PG2 injection exhibited an excellent safety profile, and has potential in ameliorating the deterioration in QoL and the AEs associated with active anticancer treatment among patients with advanced pharyngeal or laryngeal HNSCC under CCRT. Further research in patients with other cancer types or treatment modalities may widen PG2's application in clinical settings.
Collapse
Affiliation(s)
- Chia-Hsun Hsieh
- Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou; College of Medicine, Chang Gung University, No. 5, Fushin St., Gueishan District, Taoyuan, 333, Taiwan, ROC
| | - Chien-Yu Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan, ROC
| | - Cheng-Lung Hsu
- Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou; College of Medicine, Chang Gung University, No. 5, Fushin St., Gueishan District, Taoyuan, 333, Taiwan, ROC
| | - Kang-Hsing Fan
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan, ROC
| | - Shiang-Fu Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan, ROC
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University at Linkou, Taoyuan, Taiwan, ROC
| | - Shu-Kung Ng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital and Chang Gung University at Linkou, Taoyuan, Taiwan, ROC
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan, ROC
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan, ROC
| | - Jr-Rung Lin
- Clinical Informatics and Medical Statistics Research Center and Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Hung-Ming Wang
- Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou; College of Medicine, Chang Gung University, No. 5, Fushin St., Gueishan District, Taoyuan, 333, Taiwan, ROC.
| |
Collapse
|
23
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
24
|
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules 2019; 9:301. [PMID: 31349600 PMCID: PMC6722928 DOI: 10.3390/biom9080301] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease which is a major cause of coronary heart disease and stroke in humans. It is characterized by intimal plaques and cholesterol accumulation in arterial walls. The side effects of currently prescribed synthetic drugs and their high cost in the treatment of atherosclerosis has prompted the use of alternative herbal medicines, dietary supplements, and antioxidants associated with fewer adverse effects for the treatment of atherosclerosis. This article aims to present the activity mechanisms of antioxidants on atherosclerosis along with a review of the most prevalent medicinal plants employed against this multifactorial disease. The wide-ranging information in this review article was obtained from scientific databases including PubMed, Web of Science, Scopus, Science Direct and Google Scholar. Natural and synthetic antioxidants have a crucial role in the prevention and treatment of atherosclerosis through different mechanisms. These include: The inhibition of low density lipoprotein (LDL) oxidation, the reduction of reactive oxygen species (ROS) generation, the inhibition of cytokine secretion, the prevention of atherosclerotic plaque formation and platelet aggregation, the preclusion of mononuclear cell infiltration, the improvement of endothelial dysfunction and vasodilation, the augmentation of nitric oxide (NO) bioavailability, the modulation of the expression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells, and the suppression of foam cell formation.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord 8818634141, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran.
| |
Collapse
|
25
|
Castro-Alves VC, Nascimento JROD. α- and β-d-Glucans from the edible mushroom Pleurotus albidus differentially regulate lipid-induced inflammation and foam cell formation in human macrophage-like THP-1 cells. Int J Biol Macromol 2018; 111:1222-1228. [DOI: 10.1016/j.ijbiomac.2018.01.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 01/13/2023]
|
26
|
Liu P, Zhao H, Luo Y. Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis 2017; 8:868-886. [PMID: 29344421 PMCID: PMC5758356 DOI: 10.14336/ad.2017.0816] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
Owing to a dramatic increase in average life expectancy and the Family Planning program of the 1970s - 1990s, China is rapidly becoming an aging society. Therefore, the investigation of healthspan-extending drugs becomes more urgent. Astragalus membranaceus (Huangqi) is a major medicinal herb that has been commonly used in many herbal formulations in the practice of traditional Chinese medicine (TCM) to treat a wide variety of diseases and body disorders, or marketed as life-prolonging extracts for human use in China, for more than 2000 years. The major components of Astragalus membranaceus are polysaccharides, flavonoids, and saponins. Pharmacological research indicates that the extract component of Astragalus membranaceus can increase telomerase activity, and has antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, hepatoprotective, expectorant, and diuretic effects. A proprietary extract of the dried root of Astragalus membranaceus, called TA-65, was associated with a significant age-reversal effect in the immune system. Our review focuses on the function and the underlying mechanisms of Astragalus membranaceus in lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer effects, based on experimental and clinical studies.
Collapse
Affiliation(s)
- Ping Liu
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
27
|
Chen CC, Chen X, Li TC, Lin HL, Chu YT, Lee HC, Cheng YK, Chen DC, Tsai SC, Cho DY, Hsieh CL. PG2 for patients with acute spontaneous intracerebral hemorrhage: a double-blind, randomized, placebo-controlled study. Sci Rep 2017; 7:45628. [PMID: 28361971 PMCID: PMC5374535 DOI: 10.1038/srep45628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
PG2 is an infusible polysaccharide extracted from Astragalus membranaceus, which is a Chinese herb traditionally used for stroke treatment. We investigated the effect of PG2 on patients with spontaneous acute intracerebral hemorrhage (ICH). A total of 61 patients with acute spontaneous ICH were randomized to either the treatment group (TG, 30 patients), which received 3 doses of PG2 (500 mg, IV) per week for 2 weeks, or the control group (CG, 31 patients), which received PG2 placebo. At 84 days after PG2 administration, the percentage of patients with a good Glasgow outcome scale (GOS 4–5) score in the TG was similar to that in the CG (69.0% vs. 48.4%; p = 0.2). The percentage of good mRS scores (0–2) in the TG was similar to that in the CG (62.1% vs. 45.2%; p = 0.3). In addition, no significant differences were seen when comparing differences in the C-reactive protein, erythrocyte sedimentation rate, interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α, and S100B levels between baseline and days 4, 7, and 14 after PG2 administration (all p > 0.05). The results are preliminary, necessitating a more thorough assessment.
Collapse
Affiliation(s)
- Chun-Chung Chen
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan.,Stroke Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - XianXiu Chen
- Stroke Center, China Medical University Hospital, Taichung 40447, Taiwan.,Department of Public Health, China Medical University, Taichung 40402, Taiwan
| | - Tsai-Chung Li
- Graduate Institute of Biostatistics, China Medical University, Taichung 40402, Taiwan
| | - Hung-Lin Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yen-Tze Chu
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital, Tainan 70965, Taiwan
| | - Han-Chung Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Kai Cheng
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shiu-Chiu Tsai
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan.,Stroke Center, China Medical University Hospital, Taichung 40447, Taiwan.,Graduate Institute of Immunology, China Medical University, Taichung 40402, Taiwan
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
28
|
Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP, Shang P, Xie MY. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit Rev Food Sci Nutr 2017; 56 Suppl 1:S60-84. [PMID: 26463231 DOI: 10.1080/10408398.2015.1069255] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Jian-Hua Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Ming-Liang Jin
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Gordon A Morris
- c Department of Chemical Sciences , School of Applied Sciences, University of Huddersfield , Huddersfield , UK
| | - Xue-Qiang Zha
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Han-Qing Chen
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Yang Yi
- e College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan , P.R. China
| | - Jing-En Li
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China.,f College of Food Science and Engineering, Jiangxi Agricultural University , Nanchang , P.R. China
| | - Zhi-Jun Wang
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Jie Gao
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Shao-Ping Nie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Peng Shang
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Ming-Yong Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| |
Collapse
|
29
|
Wei W, Xiao HT, Bao WR, Ma DL, Leung CH, Han XQ, Ko CH, Lau CBS, Wong CK, Fung KP, Leung PC, Bian ZX, Han QB. TLR-4 may mediate signaling pathways of Astragalus polysaccharide RAP induced cytokine expression of RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:243-252. [PMID: 26743224 DOI: 10.1016/j.jep.2015.12.060] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/20/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polysaccharides of Radix Astragali (Astragalus membranaceus (Fisch) Bge.; Huangqi) are able to induce cytokine production of macrophages and are considered the main active ingredient for the immune-enhancing effect of this commonly used medicinal herb. AIM OF STUDY To investigate the molecular mechanism of immunomodulating activities of a reported Astragalus polysaccharide, RAP, which is a hyperbranched heteroglycan with average molecular weight of 1334kDa. MATERIALS AND METHODS The cytokine production of RAW264.7 cells were analyzed by using ELISA assays while cell viability was assessed by MTT method. Western blot analysis was used for determining protein contents of mitogen-activated protein kinases (MAPKs). In addition, the level of IL-6, iNOS, and TNF-α mRNA was determined by RT-PCR. RESULTS It has been found that RAP itself did not have any cytotoxic effect on mouse mammary carcinoma 4T1 cells, but it significantly enhanced cytotoxicity of the supernatant of RAW264.7cells on 4T1 cells. Furthermore, RAP enhanced the production of NO and cytokines in RAW264.7 cells, and significantly up-regulated gene expressions of TNF-α, IL-6, iNOS. All these bioactivities were blocked by the inhibitor of TLR4 (Toll-like receptor 4), suggesting that TLR4 is a receptor of RAP and mediates its immunomodulating activity. Further analyses demonstrated that RAP rapidly activated TLR4-related MAPKs, including phosphorylated ERK, phosphorylated JNK, and phosphorylated p38, and induced translocation of NF-κB as well as degradation of IκB-α. These results are helpful to better understand the immunomodulating effects of Radix Astragali. CONCLUSIONS RAP may induce cytokine production of RAW264.7 cells through TLR4-mediated activation of MAPKs and NF-κB.
Collapse
Affiliation(s)
- Wei Wei
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hai-Tao Xiao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wan-Rong Bao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Qiang Han
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun-Hay Ko
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Clara Bik-San Lau
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun-Kwok Wong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwok-Pui Fung
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ping-Chung Leung
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
30
|
Chinese Herbal Compounds for the Prevention and Treatment of Atherosclerosis: Experimental Evidence and Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:752610. [PMID: 26089946 PMCID: PMC4451781 DOI: 10.1155/2015/752610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a leading cause of disability and death worldwide. Research into the disease has led to many compelling hypotheses regarding the pathophysiology of atherosclerotic lesion formation and the resulting complications such as myocardial infarction and stroke. Herbal medicine has been widely used in China as well as other Asian countries for the treatment of cardiovascular diseases for hundreds of years; however, the mechanisms of action of Chinese herbal medicine in the prevention and treatment of atherosclerosis have not been well studied. In this review, we briefly describe the mechanisms of atherogenesis and then summarize the research that has been performed in recent years regarding the effectiveness and mechanisms of antiatherogenic Chinese herbal compounds in an attempt to build a bridge between traditional Chinese medicine and cellular and molecular cardiovascular medicine.
Collapse
|
31
|
Yu XH, Zheng XL, Tang CK. Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. Adv Clin Chem 2015; 70:1-30. [PMID: 26231484 DOI: 10.1016/bs.acc.2015.03.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall with lipid-laden lesions, involving a complex interaction between multiple different cell types and cytokine networks. Inflammatory responses mark all stages of atherogenesis: from lipid accumulation in the intima to plaque formation and eventual rupture. One of the most important regulators of inflammation is the transcription factor nuclear factor-κB (NF-κB), which is activated through the canonical and noncanonical pathways in response to various stimuli. NF-κB has long been regarded as a proatherogenic factor, because it is implicated in multiple pathological processes during atherogenesis, including foam cell formation, vascular inflammation, proliferation of vascular smooth muscle cells, arterial calcification, and plaque progression. In contrast, inhibition of NF-κB signaling has been shown to protect against atherosclerosis. This chapter aims to discuss recent progress on the roles of NF-κB in lipid metabolism and atherosclerosis and also to highlight its potential therapeutic benefits.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Chao-Ke Tang
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China.
| |
Collapse
|
32
|
ABCA1 expression in macrophages of allogeneic hematopoietic stem cell transplantation patients with severe infection undergoing continuous blood purification. Int J Artif Organs 2015; 38:83-8. [PMID: 25744199 DOI: 10.5301/ijao.5000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Excessive activation of the inflammatory mediator cascade after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients is associated with high mortality. Many studies have shown that continuous blood purification (CBP) could improve the prognosis of allo-HSCT patients with severe infection. However, the exact mechanism remains unclear. The aim of this study was to observe the effect of CBP on the expression of ATP-binding cassette transporter A1 (ABCA1) in macrophages, and to investigate the interventional effects of CBP on serum cytokine in allo-HSCT patients with severe infection. METHODS A total of 26 allo-HSCT patients with severe infection were included in this study. Before CBP and after CBP, blood samples were collected to observe hepatic and renal function, and the serum levels of TNF-α, IL-1, IL-6, and IL-10 were detected via ELISA. The THP-1 macrophages were exposed to serum samples obtained from patients at specific time points during CBP to test the changes of ABCA1 in macrophages by real-timePCR and Western blotting. RESULTS Serum creatinine, alanine aminotransferase, and C reaction protein (CRP) levels decreased significantly after CBP. Moreover, TNF-α, IL-1, and IL-6 serum levels decreased significantly, but IL-10 level increased significantly after CBP (P<.05). After CBP, ABCA1 expression levels were higher than those before CBP, and ABCA1 expression was significantly increased with the supplementation of CBP (P<.05). CONCLUSIONS CBP improved the condition of allo-HSCT patients with severe infection. CBP may be a potent up-regulator of the ABCA1 levels in macrophages of allo-HSCT patients with severe infection.
Collapse
|
33
|
Structural features and biological activities of the polysaccharides from Astragalus membranaceus. Int J Biol Macromol 2013; 64:257-66. [PMID: 24325861 DOI: 10.1016/j.ijbiomac.2013.12.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/06/2013] [Accepted: 12/02/2013] [Indexed: 12/14/2022]
Abstract
Recently, a great deal of interest has been developed to isolate and investigate novel bioactive components with health benefit effects from natural resources. The dried root of Astragalus membranaceus, one of the most popular health-promoting herbal medicines, has been used historically as an immunomodulating agent for the treatment of common cold, diarrhea, fatigue and anorexia for more than 2000 years. Modern phytochemistry and pharmacological experiments have proved that polysaccharide is one of the major active ingredients in the root of A. membranaceus with various important bioactivities, such as immunomodulation, antioxidant, antitumor, anti-diabetes, antiviral, hepatoprotection, anti-inflammation, anti-atherosclerosis, hematopoiesis and neuroprotection. The aim of the present review is to summarize previous and current references and give a comprehensive summary regarding the structural features and biological activities of A. membranaceus polysaccharides in order to provide new insight for further development of these macromolecules.
Collapse
|
34
|
Profiling of ABC transporters during active ulcerative colitis and in vitro effect of inflammatory modulators. Dig Dis Sci 2013; 58:2282-92. [PMID: 23512405 DOI: 10.1007/s10620-013-2636-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 03/07/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIM Inflammatory bowel disease is characterized by chronic inflammation of the gastro intestinal tract that manifests as ulcerative colitis and Crohn's disease. Comparative expression profiles of selected ABC transporter genes during active ulcerative colitis and intestinal tuberculosis were studied, and we also investigated the effect of inflammatory modulators on the expression of the transporters in HT-29 cells. METHODS Using the GEO database, we selected ABC transporter genes that are differentially regulated during active UC and validated the altered expression in biopsies samples by RT-PCR. We also analyzed the effect of inflammatory modulators like TNF-α, lipopolysaccharides (LPS) and drugs (5-ASA, prednisolone and hydrocortisone) on the expression of ABCA1, ABCB8, ABCF2 and ABCC4 using HT-29 cells. RESULTS We observed significant up-regulation of ABCA1 and ABCA3 while ABCF2, ABCC6, ABCB8 and ABCC4 were down-regulated during UC. ABCC4 was up-regulated in ITB but down-regulated in UC, whereas others showed similar patterns both in UC and ITB. Upon stimulation of HT29 cells by TNF-α, up-regulation of ABCA1, ABCB8, ABCF2 and ABCC4 was seen, and further using inhibitors we found that it was mediated through reactive oxygen species or NF-kB or both. LPS caused a dose dependent and significant down-regulation of ABCB8, ABCF2 and ABCC4 without any effect on ABCA1. The cells treated with drugs 5-ASA, prednisolone and hydrocortisone, exhibited up-regulation of transporters only at a higher dose. CONCLUSION Altered expression of the above transporters may be associated with the disease. The study also hints at possible mechanisms of differential expression.
Collapse
|
35
|
Yang LP, Shen JG, Xu WC, Li J, Jiang JQ. Secondary Metabolites of the GenusAstragalus:Structure and Biological-Activity Update. Chem Biodivers 2013; 10:1004-54. [DOI: 10.1002/cbdv.201100444] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Indexed: 01/22/2023]
|
36
|
Yang Y, Wang YF, Yang XF, Wang ZH, Lian YT, Yang Y, Li XW, Gao X, Chen J, Shu YW, Cheng LX, Liao YH, Liu K. Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL. J Lipid Res 2012; 54:34-43. [PMID: 23099443 DOI: 10.1194/jlr.m023846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cholesterol-metabolism-associated molecules, including scavenger receptor class A (SR-A), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), CD36, ACAT1, ABCA1, ABCG1, and scavenger receptor class B type I, can modulate cholesterol metabolism in the transformation from macrophages to foam cells. Voltage-gated potassium channel Kv1.3 has increasingly been demonstrated to play an important role in the modulation of macrophage function. Here, we investigate the role of Kv1.3 in modulating cholesterol-metabolism-associated molecules in human acute monocytic leukemia cell-derived macrophages (THP-1 macrophages) and human monocyte-derived macrophages exposed to oxidized LDL (ox-LDL). Human Kv1.3 and Kv1.5 channels (hKv1.3 and hKv1.5) are expressed in macrophages and form a heteromultimeric channel. The hKv1.3-E314 antibody that we had generated as a specific hKv1.3 blocker inhibited outward delayed rectifier potassium currents, whereas the hKv1.5-E313 antibody that we had generated as a specific hKv1.5 blocker failed. Accordingly, the hKv1.3-E314 antibody reduced percentage of cholesterol ester and enhanced apoA-I-mediated cholesterol efflux in THP-1 macrophages and human monocyte-derived macrophages exposed to ox-LDL. The hKv1.3-E314 antibody downregulated SR-A, LOX-1, and ACAT1 expression and upregulated ABCA1 expression in THP-1 macrophages and human monocyte-derived macrophages. Our results reveal that specific Kv1.3 blockade represents a novel strategy modulating cholesterol metabolism in macrophages, which benefits the treatment of atherosclerotic lesions.
Collapse
Affiliation(s)
- Yong Yang
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shengjie Tongyu Granule Inhibits Vascular Remodeling in ApoE-Gene-Knockout Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:897875. [PMID: 22811752 PMCID: PMC3395271 DOI: 10.1155/2012/897875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/12/2012] [Accepted: 04/03/2012] [Indexed: 11/18/2022]
Abstract
The aim of the present paper was to investigate the effect of Shengjie Tongyu granule on vascular remodeling in atherosclerotic mice and the relevant underlying mechanism. Sixty male ApoE-gene-knockout mice, fed a high-fat diet from 6 weeks of age, were randomized into a Shengjie Tongyu granule group (4.00 g/kg/d), a simvastatin group (9.01 mg/kg/d), and a control group (normal saline: 0.2 mL/d). At the ages of 30 and 40 weeks, we sacrificed the mice for various measurements. The results show that treatment with Shengjie Tongyu granule and simvastatin significantly decreased lumen and plaque areas in the aortic root at 30 and 40 weeks of age, decreased grade II elastic fiber lesions in the ascending aorta at 30 weeks of age, and decreased both grade II and III lesions at 40 weeks of age, compared to controls. The content of superoxide anions, and expression of MOMA-2, plasma ICAM-1, and NFκB p50 in 30- and 40-week-old mice in the Shengjie Tongyu granule and simvastatin groups were also significantly reduced compared to the control group. In conclusion, Shengjie Tongyu granule has a clear inhibitory effect on vascular remodeling and on inflammatory pathways in ApoE-gene-knockout mice.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review describes the evidence that supports the hypothesis that high-density lipoprotein (HDL) is atheroprotective due to its antiinflammatory effects and benefits on vascular health. RECENT FINDINGS Recent investigations have shown that HDL may inhibit atherosclerosis by promoting healthy endothelial function and by limiting or inhibiting the activation of macrophage and other immune cells. Receptors for HDL clearly regulate immune system function as well as cellular stress. Recent studies also suggest that participation of HDL in the process of reverse cholesterol transport may inhibit growth factor and cytokine receptor signaling by depleting cholesterol from lipid rafts. However, inflammation can also be associated with circulating dysfunctional HDL, which often possesses both prooxidative and proinflammatory properties. SUMMARY These studies suggest that HDL-based therapeutics have potential in treating both acute and chronic conditions associated with inflammation. These studies also reveal several other pathways that may be targeted for therapeutic drug development.
Collapse
|
39
|
Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 2010; 16:438-49. [PMID: 20485864 DOI: 10.2119/molmed.2010.00004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is characterized by a chronic inflammatory condition that involves numerous cellular and molecular inflammatory components. A wide array of inflammatory mediators, such as cytokines and proteins produced by macrophages and other cells, play a critical role in the development and progression of the disease. ATP-binding membrane cassette transporter A1 (ABCA1) is crucial for cellular cholesterol efflux and reverse cholesterol transport (RCT) and is also identified as an important target in antiatherosclerosis treatment. Evidence from several recent studies indicates that inflammation, along with other atherogenic-related mediators, plays distinct regulating roles in ABCA1 expression. Proatherogenic cytokines such as interferon (IFN)-γ and interleukin (IL)-1β have been shown to inhibit the expression of ABCA1, while antiatherogenic cytokines, including IL-10 and transforming growth factor (TGF)-β1, have been shown to promote the expression of ABCA1. Moreover, some cytokines such as tumor necrosis factor (TNF)-α seem to regulate ABCA1 expression in species-specific and dose-dependent manners. Inflammatory proteins such as C-reactive protein (CRP) and cyclooxygenase (COX)-2 are likely to inhibit ABCA1 expression during inflammation, and inflammation induced by lipopolysaccharide (LPS) was also found to block the expression of ABCA1. Interestingly, recent experiments revealed ABCA1 can function as an antiinflammatory receptor to suppress the expression of inflammatory factors, suggesting that ABCA1 may be the molecular basis for the interaction between inflammation and RCT. This review aims to summarize recent findings on the role of inflammatory cytokines, inflammatory proteins, inflammatory lipids, and the endotoxin-mediated inflammatory process in expression of ABCA1. Also covered is the current understanding of the function of ABCA1 in modulating the immune response and inflammation through its direct and indirect antiinflammatory mechanisms including lipid transport, high-density lipoprotein (HDL) formation and apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | |
Collapse
|