1
|
Chen J, Tchivelekete GM, Zhou X, Tang W, Liu F, Liu M, Zhao C, Shu X, Zeng Z. Anti-inflammatory activities of Gardenia jasminoides extracts in retinal pigment epithelial cells and zebrafish embryos. Exp Ther Med 2021; 22:700. [PMID: 34007309 PMCID: PMC8120509 DOI: 10.3892/etm.2021.10132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of visual impairment in developed countries. Inflammation serves a critical role in the pathogenesis of AMD. Gardenia jasminoides is found in several regions of China and is traditionally used as an organic yellow dye but has also been widely used as a therapeutic agent in numerous diseases, including inflammation, depression, hepatic and vascular disorders, which may reflect the variability of functional compounds that are present in Gardenia jasminoides extracts (GJE). To investigate the therapeutic potential of GJE for AMD, ARPE-19 cells were treated with lipopolysaccharide (LPS) or LPS plus GJE. GJE significantly decreased LPS-induced expression of proinflammatory cytokines, including IL-1β, IL-6 and TNF-α. In the in vivo study, GJE inhibited CuSO4-induced migration of primitive macrophages to the lateral line in zebrafish embryos. GJE also attenuated expression of cytokines (IL-1β, IL-6 and TNF-α), NFKB activating protein (nkap) and TLR4 in ARPE-19 cells. The results of the present study demonstrated the anti-inflammatory potential of GJE in vitro and in vivo, and suggested GJE as a therapeutic candidate for AMD.
Collapse
Affiliation(s)
- Jianrong Chen
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan 410022, P.R. China
| | | | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Weizhuo Tang
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan 410022, P.R. China
| | - Fang Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan 410022, P.R. China
| | - Minzhuo Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan 410022, P.R. China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan 410022, P.R. China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.,Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, UK.,School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan 410022, P.R. China.,Hunan Provincial Key Laboratory of Nutrition and Quality Control Aquatic Animals, Changsha, Hunan 410022, P.R. China
| |
Collapse
|
2
|
Zhang Z, Liu H, Zhao Z, Zang C, Ju C, Li F, Wang L, Yang H, Bao X, Yu Y, Yao X, Zhang D. GJ-4 alleviates Aβ 25-35-induced memory dysfunction in mice through protecting the neurovascular unit. Biomed Pharmacother 2020; 127:110131. [PMID: 32325348 DOI: 10.1016/j.biopha.2020.110131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. AD has become an important social health problem but there are few therapeutic drugs. Many researchers devote to the development of drugs for the treatment of AD. GJ-4 is crocin enrichments from Gardenia jasminoides J. Ellis, and our previous studies have shown GJ-4 had potent neuroprotective effects on several AD animal models. However, the underlying mechanisms have not been fully elucidated. The aim of the present study was to explore the mechanism of GJ-4 on a Aβ25-35-intoxicated mouse model. The results demonstrated that GJ-4 treatment significantly improved spatial learning and memory abilities of the AD mice challenged by Aβ25-35. Mechanistic study indicated that GJ-4 could alleviate endothelial dysfunction, as GJ-4 markedly reduced endothelial cell edema, as well as improved tight junction structures by up-regulating Zonula occludens-1 (ZO-1), Claudin-5 and Occludin expressions. Moreover, GJ-4 markedly reduced receptor for advanced glycation end products (RAGE) expression and increased low-density lipoprotein receptor-related protein-1 (LRP-1) expression, suggesting endothelial transduction and clearance of toxic species capabilities improved by GJ-4 treatment. The results also indicated that GJ-4 significantly decreased IL-6 and IL-1β mRNA expressions, as well as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expressions, implying the inhibition of glial activation and vascular inflammation by GJ-4 treatment. Furthermore, GJ-4 treatment inhibited glial activation mediated neuroinflammation through inhibiting high-mobility group box protein 1(HMGB-1)/RAGE/NF-κB signaling pathway, which might confer to the neuroprotection. In conclusion, our present study proved GJ-4 could protect the neurovascular unit (NVU), through attenuating endothelial cell damage, enhancing tight junction function, inhibiting of glial activation and protecting of neurons. This study provided evidence that the beneficial effects of GJ-4 on AD might be owing to its protection on NVU.
Collapse
Affiliation(s)
- Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Cheng Ju
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yang Yu
- Institute of TCM & Natural Products College of Pharmacy, Jinan University Guangzhou 510632, China
| | - Xinsheng Yao
- Institute of TCM & Natural Products College of Pharmacy, Jinan University Guangzhou 510632, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
3
|
Gardenia jasminoides Enhances CDDP-Induced Apoptosis of Glioblastoma Cells via AKT/mTOR Pathway While Protecting Death of Astrocytes. Nutrients 2020; 12:nu12010196. [PMID: 31936835 PMCID: PMC7019269 DOI: 10.3390/nu12010196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/29/2022] Open
Abstract
Gliomas are the most observed primary brain tumor, of which glioblastoma multiform (GBM) shows the highest incidence. Radiotherapy with temozolomide is the standard therapeutic method, but because of side effects, search for alternative therapies is required. Gardenia jasminoides (GJ) is flavonoid abundant with beneficial effects on inflammation, metabolic diseases, and cancers. In this study, we investigated the synergistic combination of GJ and cisplatin (CDDP) in U87MG and U373MG GBM cells. GJ and CDDP both showed cytotoxicity in U87MG cells, however GJ did not affect viability of normal astrocytes while CDDP displayed high toxicity. Cytotoxic effect of GJ and CDDP was related in apoptosis when confirmed by Western blot assays on cleaved caspase-3, caspase-9, and PARP. Moreover, GJ and CDDP showed synergistic combination in cell death of GBM cells, which was further confirmed by Western blot assays of apoptosis factors and also flow cytometry of Annexin V. Analysis on autophagy factors showed that GJ/CDDP combination induced autophagy, and through inhibition of autophagy, we could confirm autophagy is crucial to cytotoxicity of GJ/CDDP in GBM cell lines. The autophagy-mediated apoptosis of GJ/CDDP was dependent on the AKT/mTOR pathway. Overall, our results suggest GJ/CDDP combination as an effective yet safe therapeutic approach to GBMs.
Collapse
|
4
|
Wang J, Miao M, Qu L, Cui Y, Zhang Y. Protective effects of geniposide against Tripterygium glycosides (TG)-induced liver injury and its mechanisms. J Toxicol Sci 2016; 41:165-73. [PMID: 26763404 DOI: 10.2131/jts.41.165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tripterygium glycosides (TG) are commonly used for basic medicine in curing rheumatoid arthritis but with a high incidence of liver injury. Geniposide (GP) has broad and diverse bioactivities, but until now it is still unknown whether GP can protect against TG-induced liver injury. This study, for the first time, observed the possible protection of GP against TG-induced liver injury in mice and its mechanisms underlying. Oral administration of TG (270 mg/kg) induced significant elevation in the levels of serum alanine / aspartate transaminase (ALT/AST), hepatic malondialdehyde (MDA) and pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) (all P < 0.01). On the other hand, remarkably decreased biomarkers, including hepatic glutathione (GSH) level, activities of glutathione transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), and anti-inflammatory cytokine interleukin (IL)-10, were observed following TG exposure (all P < 0.01). Nevertheless, all of these phenotypes were evidently reversed by pre-administration of GP for 7 continuous days. Further analysis showed that the mRNA expression of hepatic growth factor-beta1 (TGF-β1), one of tissue repair and regeneration cytokines, was enhanced by GP. Taken together, the current research suggests that GP protects against TG-induced liver injury in mice probably involved during attenuating oxidative stress and inflammation, and promoting tissue repair and regeneration.
Collapse
Affiliation(s)
- Junming Wang
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Traditional Chinese Medicine, China
| | | | | | | | | |
Collapse
|
5
|
Sung YY, Lee AY, Kim HK. The Gardenia jasminoides extract and its constituent, geniposide, elicit anti-allergic effects on atopic dermatitis by inhibiting histamine in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:33-40. [PMID: 25153023 DOI: 10.1016/j.jep.2014.07.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides Ellis has been used in traditional medicine for treatment of inflammation, edema, and dermaitis. The aim of this study was to investigate the mechanism by which Gardenia jasminoides extract (GJE) elicits anti-allergic effects in mast cells and in mice with atopic dermatitis (AD). MATERIALS AND METHODS We investigated the effects of GJE and its fractions on compound 48/80-induced histamine release from MC/9 cells and Dermatophagoides farinae-exposed NC/Nga mice. The effects of its constituents on histamine release from MC/9 cells were also investigated. RESULTS GJE and its ethyl acetate fraction (GJE-EA) inhibited compound 48/80-induced histamine release from MC/9 mast cells. The topical application of GJE or GJE-EA to Dermatophagoides farinae-exposed NC/Nga mice reduced the symptoms of AD, inhibited the infiltration of inflammatory cells, and lowered the serum levels of immunoglobulin E and histamine. Both GJE and GJE-EA reduced the expression of cytokines (interleukin [IL]-4, IL-6, and tumor necrosis factor-alpha) and adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) in ear lesions. In addition, the quantitative analysis of GJE and GJE-EA by high-performance liquid chromatography revealed the presence of crocin and geniposide. Geniposide, but not crocin, inhibited the release of histamine from mast cells, which may contribute to the anti-allergic effect of GJE and GJE-EA. CONCLUSIONS These results suggest that GJE and GJE-EA can suppress mast cell degranulation-induced histamine release, and geniposide may be potential therapeutic candidates for AD.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Herbal Medicine Resources Group, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - A Yeong Lee
- Herbal Medicine Resources Group, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Ho Kyoung Kim
- Herbal Medicine Resources Group, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
6
|
Anti-Proliferative Effect of an Aqueous Extract of Prunella vulgaris in Vascular Smooth Muscle Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:936463. [PMID: 24159354 PMCID: PMC3789443 DOI: 10.1155/2013/936463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/10/2013] [Indexed: 11/18/2022]
Abstract
The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial walls is an important pathogenic factor of vascular disorders such as diabetic atherosclerosis. We have reported the anti-inflammatory effect of an aqueous extract from Prunella vulgaris (APV) in vascular endothelial cell. In the present study, APV exhibited inhibitory effects on high glucose-stimulated VSMC proliferation, migration, and invasion activities, inducing G1 cell cycle arrest with downregulation of cyclins and CDKs and upregulation of the CKIs, p21waf1/cip1 and p27kip1. Furthermore, APV dose dependently suppressed the high glucose-induced matrix metalloproteinase activity. High glucose-induced phosphorylation of ERK, p38 MAPK, was decreased by the pretreatment of APV. NF-κB activation by high glucose was attenuated by APV, as an antioxidant. APV attenuated the high glucose-induced decrease of nuclear factor E2-related factor-2 (Nrf2) translocation and heme oxygenase-1 (HO-1) expression. Intracellular cGMP level was also increased by APV treatment. These results demonstrate that APV may inhibit VSMC proliferation via downregulating ROS/NF-κB /ERK/p38 MAPK pathways. In addition, APV has a beneficial effect by the interaction of Nrf2-mediated NO/cGMP with HO-1, suggesting that Prunella vulgaris may be useful in preventing diabetic atherosclerosis.
Collapse
|