1
|
Yu C, Liu G, Qin J, Wan X, Guo A, Wei H, Chen Y, Lian B, Zhong F, Zhang J. Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica. BMC PLANT BIOLOGY 2024; 24:171. [PMID: 38443839 PMCID: PMC10913235 DOI: 10.1186/s12870-024-04776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Lagerstroemia indica is a widely cultivated ornamental woody shrub/tree of the family Lythraceae that is used as a traditional medicinal plant in East Asia and Egypt. However, unlike other ornamental woody plants, its genome is not well-investigated, which hindered the discovery of the key genes that regulate important traits and the synthesis of bioactive compounds. RESULTS In this study, the genomic sequences of L. indica were determined using several next-generation sequencing technologies. Altogether, 324.01 Mb sequences were assembled and 98.21% (318.21 Mb) of them were placed in 24 pseudo-chromosomes. The heterozygosity, repeated sequences, and GC residues occupied 1.65%, 29.17%, and 38.64% of the genome, respectively. In addition, 28,811 protein-coding gene models, 327 miRNAs, 552 tRNAs, 214 rRNAs, and 607 snRNAs were identified. The intra- and interspecies synteny and Ks analysis revealed that L. indica exhibits a hexaploidy. The co-expression profiles of the genes involved in the phenylpropanoid (PA) and flavonoid/anthocyanin (ABGs) pathways with the R2R3 MYB genes (137 members) showed that ten R2R3 MYB genes positively regulate flavonoid/anthocyanin biosynthesis. The colors of flowers with white, purple (PB), and deep purplish pink (DPB) petals were found to be determined by the levels of delphinidin-based (Dp) derivatives. However, the substrate specificities of LiDFR and LiOMT probably resulted in the different compositions of flavonoid/anthocyanin. In L. indica, two LiTTG1s (LiTTG1-1 and LiTTG1-2) were found to be the homologs of AtTTG1 (WD40). LiTTG1-1 was found to repress anthocyanin biosynthesis using the tobacco transient transfection assay. CONCLUSIONS This study showed that the ancestor L. indica experienced genome triplication approximately 38.5 million years ago and that LiTTG1-1 represses anthocyanin biosynthesis. Furthermore, several genes such as LiDFR, LiOMTs, and R2R3 LiMYBs are related to anthocyanin biosynthesis. Further studies are required to clarify the mechanisms and alleles responsible for flower color development.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Guoyuan Liu
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Jin Qin
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Xi Wan
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Anfang Guo
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Hui Wei
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Yanhong Chen
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Bolin Lian
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Fei Zhong
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Jian Zhang
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
| |
Collapse
|
2
|
Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005. Nutrients 2021; 13:nu13041132. [PMID: 33808153 PMCID: PMC8065858 DOI: 10.3390/nu13041132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are attracting increasing attention due to their antioxidant, cardioprotective, and immunomodulatory properties. Nevertheless, little is known about their role in exercise performance in association with immune function. This systematic review firstly aimed to shed light on the ergogenic potential of flavonoids. A search strategy was run using SCOPUS database. The returned studies were screened by prespecified eligibility criteria, including intervention lasting at least one week and performance objectively quantified, among others. Fifty-one studies (54 articles) met the inclusion criteria, involving 1288 human subjects, either physically untrained or trained. Secondly, we aimed to associate these studies with the immune system status. Seventeen of the selected studies (18 articles) assessed changes in the immune system. The overall percentage of studies reporting an improved exercise performance following flavonoid supplementation was 37%, the proportion being 25% when considering quercetin, 28% for flavanol-enriched extracts, and 54% for anthocyanins-enriched extracts. From the studies reporting an enhanced performance, only two, using anthocyanin supplements, focused on the immune system and found certain anti-inflammatory effects of these flavonoids. These results suggest that flavonoids, especially anthocyanins, may exert beneficial effects for athletes’ performances, although further studies are encouraged to establish the optimal dosage and to clarify their impact on immune status.
Collapse
|
3
|
Ma Y, Yan F, Wei W, Deng J, Li L, Liu L, Sun J. Litchi Seed Aqueous Extracts play a role in suppression of epithelial-mesenchymal transition, invasion and migration in breast cancer cells. Cell Cycle 2020; 19:317-325. [PMID: 31918603 DOI: 10.1080/15384101.2019.1710912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We carried out this study to unravel the function of Litchi Seed Aqueous Extracts (LSAE) on biological functions of breast cancer (BC) cells. MTT assay was adopted to measure proliferation of BC cells (MCF7, BT474 and MDA-MB-231) and normal mammary cells (MCF10A) under different time points (24, 48 and 72 h) and different concentrations (50, 100, 200 and 400 μg/mL). MCF-7 cells were selected for subsequent experiments and were grouped into blank group, negative control (NC) group, low-, medium- and high-dose LSAE (L-LSAE, M-LSAE, H-LSAE) groups. Cell viability, invasion, migration and apoptosis were measured by functional assays. Low dosage of LSAE (50 and 100 μg/mL) enhanced proliferation of MCF10A cells, while high dosage of LSAE (200 and 400 μg/mL) suppressed proliferation of MCF10A cells. The proliferation inhibition rate in BT474 and MDA-MB-231cells was increased relative to that in MCF7 cells. MCF-7 cells in the L-LSAE, M-LSAE and H-LSAE groups were rounded and epithelial-like, in which cell survival rate, epithelial-mesenchymal transition (EMT), invasion and migration abilities were reduced versus the blank and NC groups. The tendency in the H-LSAE group was substantially obvious than those in the L-LSAE and M-LSAE groups (both P < 0.05). We found that LSAE is able to inhibit EMT, invasion and migration in BC cells based on concentration and time.
Collapse
Affiliation(s)
- Yanling Ma
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Fei Yan
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Wujie Wei
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Jie Deng
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Li Li
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Li Liu
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Jianhai Sun
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| |
Collapse
|
4
|
Emanuele S, Lauricella M, Calvaruso G, D'Anneo A, Giuliano M. Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways. Nutrients 2017; 9:nu9090992. [PMID: 28885570 PMCID: PMC5622752 DOI: 10.3390/nu9090992] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
Litchi is a tasty fruit that is commercially grown for food consumption and nutritional benefits in various parts of the world. Due to its biological activities, the fruit is becoming increasingly known and deserves attention not only for its edible part, the pulp, but also for its peel and seed that contain beneficial substances with antioxidant, cancer preventive, antimicrobial, and anti-inflammatory functions. Although literature demonstrates the biological activity of Litchi components in reducing tumor cell viability in in vitro or in vivo models, data about the biochemical mechanisms responsible for these effects are quite fragmentary. This review specifically describes, in a comprehensive analysis, the antitumor properties of the different parts of Litchi and highlights the main biochemical mechanisms involved.
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Marianna Lauricella
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Giuseppe Calvaruso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Antonella D'Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
5
|
Yamanishi R, Yoshigai E, Okuyama T, Mori M, Murase H, Machida T, Okumura T, Nishizawa M. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One 2014; 9:e93818. [PMID: 24705335 PMCID: PMC3976307 DOI: 10.1371/journal.pone.0093818] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/07/2014] [Indexed: 12/23/2022] Open
Abstract
Flavanol (flavan-3-ol)-rich lychee fruit extract (FRLFE) is a mixture of oligomerized polyphenols primarily derived from lychee fruit and is rich in flavanol monomers, dimers, and trimers. Supplementation with this functional food has been shown to suppress inflammation and tissue damage caused by high-intensity exercise training. However, it is unclear whether FRLFE has in vitro anti-inflammatory effects, such as suppressing the production of the proinflammatory cytokine tumor necrosis factor α (TNF-α) and the proinflammatory mediator nitric oxide (NO), which is synthesized by inducible nitric oxide synthase (iNOS). Here, we analyzed the effects of FRLFE and its constituents on the expression of inflammatory genes in interleukin 1β (IL-1β)-treated rat hepatocytes. FRLFE decreased the mRNA and protein expression of the iNOS gene, leading to the suppression of IL-1β-induced NO production. FRLFE also decreased the levels of the iNOS antisense transcript, which stabilizes iNOS mRNA. By contrast, unprocessed lychee fruit extract, which is rich in flavanol polymers, and flavanol monomers had little effect on NO production. When a construct harboring the iNOS promoter fused to the firefly luciferase gene was used, FRLFE decreased the luciferase activity in the presence of IL-1β, suggesting that FRLFE suppresses the promoter activity of the iNOS gene at the transcriptional level. Electrophoretic mobility shift assays indicated that FRLFE reduced the nuclear transport of a key regulator, nuclear factor κB (NF-κB). Furthermore, FRLFE inhibited the phosphorylation of NF-κB inhibitor α (IκB-α). FRLFE also reduced the mRNA levels of NF-κB target genes encoding cytokines and chemokines, such as TNF-α. Therefore, FRLFE inhibited NF-κB activation and nuclear translocation to suppress the expression of these inflammatory genes. Our results suggest that flavanols may be responsible for the anti-inflammatory and hepatoprotective effects of FRLFE and may be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Ryota Yamanishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Emi Yoshigai
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masatoshi Mori
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiromitsu Murase
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toru Machida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| |
Collapse
|
6
|
Yang YJ, Kim YJ, Yang YK, Kim JY, Kwon O. Dietary flavan-3-ols intake and metabolic syndrome risk in Korean adults. Nutr Res Pract 2012; 6:68-77. [PMID: 22413043 PMCID: PMC3296925 DOI: 10.4162/nrp.2012.6.1.68] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 11/04/2022] Open
Abstract
Flavan-3-ols are a subclass of flavonoids found in a variety of foods including teas. The effects of flavan-3-ols on the risk of metabolic syndrome (MetS) have been investigated, generally focusing on tea catechins or individual flavan-3-ol rich foods, but there is little information on dietary flavan-3-ols intake and risk of MetS in population-based studies. In this cross-sectional study, we examined the association between dietary flavan-3-ols intake and the risk of MetS in Korean adults. Subjects comprised 1,827 men and 2,918 women aged 20-69 years whose data was included in the 2008 Korean National Health and Nutrition Examination Survey. This survey was conducted between January 2008 and December 2008. Total flavan-3-ols intakes were calculated from 24-hour dietary recalls using a flavonoids database. Thirty percent of the male subjects and 24% of the female subjects were reported as having MetS. In the female subjects, flavan3-ols intake was inversely associated with the risk of MetS after adjusting for potential confounders (5th vs. 1st quintile, OR = 0.64, 95% CI = 0.45-0.91, P for trend = 0.384). The main food source of flavan-3-ols was green tea followed by apples and grapes. Among MetS components, flavan3-ols intake was inversely associated with the risk of high blood pressure after adjusting for potential confounders (5th vs. 1st quintile, OR = 0.64, 95% CI = 0.45-0.90, P for trend = 0.005). No significant association between flavan-3-ols intake and risk of MetS was found in the male subjects. After stratified analysis by obesity (BMI ≥ 25 or BMI < 25), however, flavan3-ols intake was inversely related to the risk of hypertension in non-obese men. These results suggest that dietary flavan-3-ols intake may have beneficial effects on MetS risk by reducing the risk of hypertension. The effects of flavan-3-ols intake dependent on obesity need further investigation.
Collapse
Affiliation(s)
- Yoon Jung Yang
- Department of Nutritional Science and Food Management, Ewha Womans University, 11-1 Daehyeon-dong, Seodeamun-gu, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|