1
|
Liang Y, Ban Y, Liu L, Li Y. Inhibitory Effects of the Polyphenols from the Root of Rhizophora apiculata Blume on Fatty Acid Synthase Activity and Human Colon Cancer Cells. Molecules 2024; 29:1180. [PMID: 38474695 DOI: 10.3390/molecules29051180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Marine mangrove vegetation has been traditionally employed in folk medicine to address various ailments. Notably, Rhizophora apiculata Blume has exhibited noteworthy properties, demonstrating efficacy against cancer, viruses, and bacteria. The enzyme fatty acid synthase (FAS) plays a pivotal role in de novo fatty acid synthesis, making it a promising target for combating colon cancer. Our study focused on evaluating the FAS inhibitory effects of both the crude extract and three isolated compounds from R. apiculata. The n-butanol fraction of R. apiculata extract (BFR) demonstrated a significant inhibition of FAS, with an IC50 value of 93.0 µg/mL. For inhibition via lyoniresinol-3α-O-β-rhamnopyranoside (LR), the corresponding IC50 value was 20.1 µg/mL (35.5 µM). LR competitively inhibited the FAS reaction with acetyl-CoA, noncompetitively with malonyl-CoA, and in a mixed manner with NADPH. Our results also suggest that both BFR and LR reversibly bind to the KR domain of FAS, hindering the reduction of saturated acyl groups in fatty acid synthesis. Furthermore, BFR and LR displayed time-dependent inhibition for FAS, with kobs values of 0.0045 min-1 and 0.026 min-1, respectively. LR also exhibited time-dependent inhibition on the KR domain, with a kobs value of 0.019 min-1. In human colon cancer cells, LR demonstrated the ability to reduce viability and inhibit intracellular FAS activity. Notably, the effects of LR on human colon cancer cells could be reversed with the end product of FAS-catalyzed chemical reactions, affirming the specificity of LR on FAS. These findings underscore the potential of BFR and LR as potent FAS inhibitors, presenting novel avenues for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Yan Liang
- School of Sports Sciences, Beijing Sport University, No. 48, Xinxi Road, Beijing 100084, China
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, Beisanhuanxi Road, Beijing 100191, China
| | - Yue Ban
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, Beisanhuanxi Road, Beijing 100191, China
| | - Lei Liu
- College of Chemistry and Materials Engineering, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanchun Li
- School of Sports Sciences, Beijing Sport University, No. 48, Xinxi Road, Beijing 100084, China
| |
Collapse
|
2
|
Functional Characterization of Gomisin N in High-Fat-Induced Drosophila Obesity Models. Int J Mol Sci 2020; 21:ijms21197209. [PMID: 33003580 PMCID: PMC7582321 DOI: 10.3390/ijms21197209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
Gomisin N (GN) is lignin derived from Schisandra chinensis that has been reported to exhibit hepato-protective, anti-cancer, and anti-inflammatory effects. However, its role in whole-body energetic homeostasis remains unclear. In this study, we employed Drosophila melanogaster as a diet-induced obese model to elucidate the effects of GN on lipid and glucose metabolism by measuring climbing activity, triglyceride levels, and lifespan under a rearing condition of a high-fat diet (HFD) containing 20% coconut oil, with or without GN. Constant exposure of flies to an HFD resulted in increased body weight and decreased climbing activity, along with a shortened life span. Importantly, the administration of GN to HFD groups lowered their body weight and induced a specific upregulation of lipid storage droplet (Lsd)-2 and hormone-sensitive lipase (Hsl), in addition to improved lifespan. Importantly, GN in HFD groups appeared to downregulate heat shock protein Hsp90 family member (dGRP94), a key regulator of the endoplasmic reticulum stress response, which may also contribute to improved life span in the presence of GN. Taken together, these in vivo findings suggest that GN could serve as a useful agent for the prevention and treatment of obesity.
Collapse
|
3
|
Potential of Schisandra chinensis (Turcz.) Baill. in Human Health and Nutrition: A Review of Current Knowledge and Therapeutic Perspectives. Nutrients 2019; 11:nu11020333. [PMID: 30720717 PMCID: PMC6412213 DOI: 10.3390/nu11020333] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022] Open
Abstract
Schisandra chinensis (Turcz.) Baill. (SCE) is a plant with high potential for beneficial health effects, confirmed by molecular studies. Its constituents exert anti-cancer effects through the induction of cell cycle arrest and apoptosis, as well as inhibition of invasion and metastasis in cancer cell lines and experimental animals. SCE displays antimicrobial effects against several pathogenic strains. It has anti-diabetic potential, supported by hypoglycemic activity. A diet rich in SCE improves pancreatic functions, stimulates insulin secretion, and reduces complications in diabetic animals. SCE prevents lipid accumulation and differentiation of preadipocytes, indicating its anti-obesity potential. SCE exerts a protective effect against skin photoaging, osteoarthritis, sarcopenia, senescence, and mitochondrial dysfunction, and improves physical endurance and cognitive/behavioural functions, which can be linked with its general anti-aging potency. In food technology, SCE is applied as a preservative, and as an additive to increase the flavour, taste, and nutritional value of food. In summary, SCE displays a variety of beneficial health effects, with no side effects. Further research is needed to determine the molecular mechanisms of SCE action. First, the constituents responsible for its beneficial effects should be isolated and identified, and recommended as preventative nutritional additives, or considered as therapeutics.
Collapse
|
4
|
Jiang H, Gan T, Zhang J, Ma Q, Liang Y, Zhao Y. The Structures and Bioactivities of Fatty Acid Synthase Inhibitors. Curr Med Chem 2019; 26:7081-7101. [DOI: 10.2174/0929867326666190507105022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/12/2018] [Accepted: 05/18/2018] [Indexed: 11/22/2022]
Abstract
Background:
Fatty Acid Synthase (FAS or FASN) is a vital enzyme which catalyzes
the de novo synthesis of long chain fatty acids. A number of studies have recently been reported
that FAS was combined targets for the discovery of anti-obesity and anti-cancer drugs. Great interest
has been developed in finding novel FAS inhibitors, and result in more than 200 inhibitors being
reported.
Methods:
The reported research literature about the FAS inhibitors was collected and analyzedsised
through major databases including Web of Science, and PubMed. Then the chemical stractures,
FAS inhibitory activities, and Structure-Activity Relationships (SAR) were summarized
focused on all these reported FAS inhibitors.
Results:
The 248 FAS inhibitors, which were reported during the past 20 years, could be divided
into thiolactone, butyrolactone and butyrolactam, polyphenols, alkaloids, terpenoids, and other
structures, in view of their structure characteristics. And the SAR of high inhibitory structures of
each type was proposed in this paper.
Conclusion:
A series of synthetic quinolinone derivatives show strongest inhibitory activity in the
reported FAS inhibitors. Natural polyphenols, existing in food and herbs, show more adaptive in
medicine exploration because of their safety and efficiency. Moreover, screening the FAS inhibitors
from microorganism and marine natural products could be the hot research directions in the
future.
Collapse
Affiliation(s)
- Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tian Gan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiasui Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qingyun Ma
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yan Liang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Youxing Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
5
|
Liu Y, Zhang Y, Chen SN, Friesen JB, Nikolić D, Choules MP, McAlpine JB, Lankin DC, Gemeinhart RA, Pauli GF. The influence of natural deep eutectic solvents on bioactive natural products: studying interactions between a hydrogel model and Schisandra chinensis metabolites. Fitoterapia 2018; 127:212-219. [PMID: 29474979 DOI: 10.1016/j.fitote.2018.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
Natural Deep Eutectic Solvent (NADES) species can exhibit unexpected solubilizing power for lipophilic molecules despite their simple composition: hydrophilic organic molecules and water. In the present study, the unique properties of NADES species were applied in combination with a model polymer system: a hydrophilic chitosan/alginate hydrogel. Briefly, NADES species (e.g., mannose-dimethylurea-water, 2:5:5, mole/mole) formed matrices to 1) dissolve lipophilic molecules (e.g., curcumin), 2) load lipophilic molecule(s) into the hydrogel, and 3) spontaneously vacate from the system. NADES species ubiquitously occur in natural sources, and a crude extract is a mixture of the NADES species and bioactive metabolites. Based on these ideas, we hypothesized that the crude extract may also allow the loading of natural bioactive molecules from a natural NADES species into (bio)hydrogel systems. To evaluate this hypothesis in vitro, Schisandra chinensis fruit extract was chosen as a representative mixture of lipophilic botanical molecules and hydrophilic NADES species. The results showed that the NADES matrix of S. chinensis was capable of loading at least three bioactive lignans (i.e., gomisin A, gomisin J, and angeloylgomisin H) into the polymer system. The lipophilic metabolites can subsequently be released from the hydrogel. The outcomes suggest that a unique drug delivery mechanism may exist in nature, thereby potentially improving the bioavailability of lipophilic metabolites through physicochemical interactions with the NADES.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yu Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - J Brent Friesen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, IL 60305, USA
| | - Dejan Nikolić
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mary P Choules
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James B McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - David C Lankin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Richard A Gemeinhart
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Departments of Bioengineering and Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, IL 60305, USA.
| |
Collapse
|
6
|
Kim M, Lim SJ, Lee HJ, Kim SY, Nho CW. Gomisin J Inhibits Oleic Acid-Induced Hepatic Lipogenesis by Activation of the AMPK-Dependent Pathway and Inhibition of the Hepatokine Fetuin-A in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9729-9739. [PMID: 26455261 DOI: 10.1021/acs.jafc.5b04089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of our study is to investigate the molecular mechanism of gomisin J from Schisandra chinensis on the oleic acid (OA)-induced lipid accumulation in HepG2 cells. Gomisin J attenuated lipid accumulation in OA-induced HepG2 cells. It also suppressed the expression of lipogenic enzymes and inflammatory mediators and increased the expression of lipolytic enzymes in OA-induced HepG2 cells. Furthermore, the use of specific inhibitors and fetuin-A siRNA and liver kinase B1 (LKB1) siRNA transfected cells demonstrated that gomisin J regulated lipogenesis and lipolysis via inhibition of fetuin-A and activation of an AMP-activated protein kinase (AMPK)-dependent pathway in HepG2 cells. Our results showed that gomisin J suppressed lipid accumulation by regulating the expression of lipogenic and lipolytic enzymes and inflammatory molecules through activation of AMPK, LKB1, and Ca(2+)/calmodulin-dependent protein kinase II and inhibition of fetuin-A in HepG2 cells. This suggested that gomisin J has potential benefits in treating nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Myungsuk Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon 210-340, Korea
| | - Sue Ji Lim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon 210-340, Korea
- Department of Chemistry, Gangneung-Wonju National University , Gangneung, Gangwon-do 210-702, Korea
| | - Hee-Ju Lee
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon 210-340, Korea
| | - Sun Young Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon 210-340, Korea
| | - Chu Won Nho
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon 210-340, Korea
| |
Collapse
|
7
|
Song MY, Wang JH, Eom T, Kim H. Schisandra chinensis fruit modulates the gut microbiota composition in association with metabolic markers in obese women: a randomized, double-blind placebo-controlled study. Nutr Res 2015; 35:655-663. [PMID: 26048342 DOI: 10.1016/j.nutres.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/28/2015] [Accepted: 05/08/2015] [Indexed: 11/20/2022]
Abstract
Schisandra chinensis fruit (SCF) is known to have beneficial effects on metabolic diseases, including obesity, and to affect gut microbiota in in vivo studies. However, in human research, there have been a few studies in terms of its clinical roles in lipid metabolism and modulation of gut microbiota. A double-blind, placebo-controlled study with 28 obese women with SCF or placebo was conducted for 12 weeks. Anthropometry and blood and fecal sampling were performed before and after treatment. Analysis of the gut microbiota in feces was performed using denaturing gradient gel electrophoresis and quantitative polymerase chain reaction. Although the values did not differ significantly between the 2 groups, the SCF group tended to show a greater decrease in waist circumference, fat mass, fasting blood glucose, triglycerides, aspartate aminotransferase, and alanine aminotransferase than the placebo group. Clustering of the denaturing gradient gel electrophoresis fingerprints for total bacteria before and after treatment indicated more separate clustering in SCF group than placebo. In correlation analysis, Bacteroides and Bacteroidetes (both increased by SCF) showed significant negative correlation with fat mass, aspartate aminotransferase, and/or alanine aminotransferase, respectively. Ruminococcus (decreased by SCF) showed negative correlation with high-density lipoprotein cholesterol and fasting blood glucose. In conclusion, administration of SCF for 12 weeks resulted in modulation of the gut microbiota composition in Korean obese women, and significant correlations with some bacterial genera and metabolic parameters were noted. However, in general, SCF was not sufficient to induce significant changes in obesity-related parameters compared with placebo.
Collapse
Affiliation(s)
- Mi-young Song
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Jing-hua Wang
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| | - Taewoong Eom
- Graduate School of Korean Medicine, Dongguk University, Seoul, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, Republic of Korea.
| |
Collapse
|
8
|
Park HJ, Lee SJ, Song Y, Jang SH, Ko YG, Kang SN, Chung BY, Kim HD, Kim GS, Cho JH. Schisandra chinensis prevents alcohol-induced fatty liver disease in rats. J Med Food 2014; 17:103-10. [PMID: 24456360 DOI: 10.1089/jmf.2013.2849] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Schisandra chinensis (SC), a traditional herbal medicine, has been prescribed for patients suffering from various liver diseases, including hepatic cancer, hypercholesterolemia, and CCl₄-induced liver injury. We investigated whether SC extract has a protective effect on alcohol-induced fatty liver and studied its underlying mechanisms. Rats were fed with ethanol by intragastric administration every day for 5 weeks to induce alcoholic fatty liver. Ethanol treatment resulted in a significant increase in alanine aminotransferase, aspartate aminotransferase, and hepatic triglyceride (TG) levels and caused fatty degeneration of liver. Ethanol administration also elevated serum TG and total cholesterol (TC) and decreased high-density lipoprotein (HDL) cholesterol levels. However, after administration of ethanol plus SC extracts, the ethanol-induced elevation in liver TC and TG levels was reversed. Elevation in serum TG was not observed after treatment with SC. Moreover, compared with the ethanol-fed group, the rats administered ethanol along with SC extracts for 5 weeks showed attenuated fatty degeneration and an altered lipid profile with decreased serum TC and TG, and increased HDL cholesterol levels. Chronic ethanol consumption did not affect peroxisome proliferator-activated receptor γ (PPARγ) levels, but it decreased PPARα and phospho-AMP-activated protein kinase (AMPK) levels in the liver. However, SC prevented the ethanol-induced decrease in PPARα expression and induced a significant decrease in sterol regulatory element-binding protein-1 expression and increase in phospho-AMPK expression in rats with alcoholic fatty liver. SC administration resulted in a significant decrease in intracellular lipid accumulation in hepatocytes along with a decrease in serum TG levels, and it reversed fatty liver to normal conditions, as measured by biochemical and histological analyses. Our results indicate that the protective effect of SC is accompanied by a significant increase in phospho-AMPK and PPARα expression in hepatic tissue of alcoholic rats, thereby suggesting that SC has the ability to prevent ethanol-induced fatty liver, possibly through activation of AMPK and PPARα signaling.
Collapse
Affiliation(s)
- Hyoung Joon Park
- 1 Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University , Jinju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Combined ethanol extract of grape pomace and omija fruit ameliorates adipogenesis, hepatic steatosis, and inflammation in diet-induced obese mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:212139. [PMID: 23690838 PMCID: PMC3652153 DOI: 10.1155/2013/212139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/30/2013] [Accepted: 03/30/2013] [Indexed: 12/30/2022]
Abstract
The aim of this study was to evaluate the long-term effects of grape pomace ethanol extract (GPE) with or without omija fruit ethanol extract (OFE) on adiposity, hepatic steatosis, and inflammation in diet-induced obese mice. Male C57BL/6J mice were fed a high-fat diet (HFD) as the control diet and HFD plus GPE (0.5%, w/w) with or without OFE (0.05%, w/w) as the experimental diet for 12 weeks. GPE alone did not significantly affect adipogenesis and hepatic steatosis. However, the supplementation of GPE + OFE significantly lowered body weight gain, white adipose tissue weight, adipocyte size, and plasma free fatty acid and adipokines (leptin, PAI-1, IL-6, and MCP-1) levels in HFD-fed mice compared to those of the control group. These beneficial effects of GPE + OFE were partly related to the decreased expression of lipogenic and inflammatory genes in white adipose tissue. GPE + OFE supplementation also significantly lowered liver weight and ameliorated fatty liver by inhibiting expression of hepatic genes involved in fatty acid and cholesterol syntheses as well as inflammation and by activating hepatic fatty acid oxidation. These findings suggest that the combined ethanol extract of grape pomace and omija fruit has the potential to improve adiposity and fatty liver in diet-induced obese mice.
Collapse
|
11
|
Park HJ, Cho JY, Kim MK, Koh PO, Cho KW, Kim CH, Lee KS, Chung BY, Kim GS, Cho JH. Anti-obesity effect of Schisandra chinensis in 3T3-L1 cells and high fat diet-induced obese rats. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.101] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
|
13
|
|