1
|
Strzelecki P, Karczewska M, Szalewska-Pałasz A, Nowicki D. Phytochemicals Controlling Enterohemorrhagic Escherichia coli (EHEC) Virulence-Current Knowledge of Their Mechanisms of Action. Int J Mol Sci 2025; 26:381. [PMID: 39796236 PMCID: PMC11719993 DOI: 10.3390/ijms26010381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a common pathotype of E. coli that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains. Humans can become infected with EHEC through the consumption of contaminated food and water or through direct contact with infected animals or humans. E. coli O157:H7 is one of the most commonly reported causes of foodborne illnesses in developed countries. The formation of attaching and effacing (A/E) lesions on the intestinal epithelium, combined with Shiga toxin production, is a hallmark of EHEC infection and can lead to lethal hemolytic-uremic syndrome (HUS). For the phage-dependent regulation of Shiga toxin production, antibiotic treatment is contraindicated, as it may exacerbate toxin production, limiting therapeutic options to supportive care. In response to this challenge and the growing threat of antibiotic resistance, phytochemicals have emerged as promising antivirulence agents. These plant-derived compounds target bacterial virulence mechanisms without promoting resistance. Therefore, the aim of this study is to summarize the recent knowledge on the use of phytochemicals targeting EHEC. We focused on the molecular basis of their action, targeting the principal virulence determinants of EHEC.
Collapse
Affiliation(s)
| | | | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.S.); (M.K.)
| |
Collapse
|
2
|
Wei ZY, Feng M, Zhang DX, Jiang CY, Deng Y, Wang ZJ, Feng K, Song Y, Zhou N, Wang YL, Liu SJ. Deep insights into the assembly mechanisms, co-occurrence patterns, and functional roles of microbial community in wastewater treatment plants. ENVIRONMENTAL RESEARCH 2024; 263:120029. [PMID: 39299446 DOI: 10.1016/j.envres.2024.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The understanding of activated sludge microbial status and roles is imperative for improving and enhancing the performance of wastewater treatment plants (WWTPs). In this study, we conducted a deep analysis of activated sludge microbial communities across five compartments (inflow, effluent, and aerobic, anoxic, anaerobic tanks) over temporal scales, employing high-throughput sequencing of 16S rRNA amplicons and metagenome data. Clearly discernible seasonal patterns, exhibiting cyclic variations, were observed in microbial diversity, assembly, co-occurrence network, and metabolic functions. Notably, summer samples exhibited higher α-diversity and were distinctly separated from winter samples. Our analysis revealed that microbial community assembly is influenced by both stochastic processes (66%) and deterministic processes (34%), with winter samples demonstrating more random assembly compared to summer. Co-occurrence patterns were predominantly mutualistic, with over 96% positive correlations, and summer networks were more organized than those in winter. These variations were significantly correlated with temperature, total phosphorus and sludge volume index. However, no significant differences were found among microbial community across five compartments in terms of β diversity. A core community of keystone taxa was identified, playing key roles in eight nitrogen and eleven phosphorus cycling pathways. Understanding the assembly mechanisms, co-occurrence patterns, and functional roles of microbial communities is essential for the design and optimization of biotechnological treatment processes in WWTPs.
Collapse
Affiliation(s)
- Zi-Yan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Feng
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Ding-Xi Zhang
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhu-Jun Wang
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs & School of Rural Revitalization), Hainan University, Haikou, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yang Song
- PetroChina Planning and Engineering Institute, Beijing, China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
3
|
Chen K, Gao Z. Acacetin, a Natural Flavone with Potential in Improving Liver Disease Based on Its Anti-Inflammation, Anti-Cancer, Anti-Infection and Other Effects. Molecules 2024; 29:4872. [PMID: 39459239 PMCID: PMC11509893 DOI: 10.3390/molecules29204872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Liver disease is a global public problem, and the cost of its therapy is a large financial burden to governments. It is well known that drug therapy plays a critical role in the treatment of liver disease. However, present drugs are far from meeting clinical needs. Lots of efforts have been made to find novel agents to treat liver disease in the past several decades. Acacetin is a dihydroxy and monomethoxy flavone, named 5,7-dihydroxy-4'-methoxyflavone, which can be found in diverse plants. It has been reported that acacetin exhibits multiple pharmacological activities, including anti-cancer, anti-inflammation, anti-virus, anti-obesity, and anti-oxidation. These studies indicate the therapeutic potential of acacetin in liver disease. This review discussed the comprehensive information on the pathogenesis of liver disease (cirrhosis, viral hepatitis, drug-induced liver injury, and hepatocellular carcinoma), then introduced the biological source, structural features, and pharmacological properties of acacetin, and the possible application in preventing liver disease along with the pharmacokinetic and toxicity of acacetin, and future research directions. We systemically summarized the latest research progress on the potential therapeutic effect of acacetin on liver disease and existing problems. Based on the present published information, the natural flavone acacetin is an anticipated candidate agent for the treatment of liver disease.
Collapse
Affiliation(s)
- Kuihao Chen
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd., Ningbo 315211, China
| | - Zhe Gao
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd., Ningbo 315211, China
| |
Collapse
|
4
|
Nausch B, Bittner CB, Höller M, Abramov-Sommariva D, Hiergeist A, Gessner A. Contribution of Symptomatic, Herbal Treatment Options to Antibiotic Stewardship and Microbiotic Health. Antibiotics (Basel) 2022; 11:1331. [PMID: 36289988 PMCID: PMC9598931 DOI: 10.3390/antibiotics11101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/03/2022] Open
Abstract
Epithelial surfaces in humans are home to symbiotic microbes (i.e., microbiota) that influence the defensive function against pathogens, depending on the health of the microbiota. Healthy microbiota contribute to the well-being of their host, in general (e.g., via the gut-brain axis), and their respective anatomical site, in particular (e.g., oral, urogenital, skin, or respiratory microbiota). Despite efforts towards a more responsible use of antibiotics, they are often prescribed for uncomplicated, self-limiting infections and can have a substantial negative impact on the gut microbiota. Treatment alternatives, such as non-steroidal anti-inflammatory drugs, may also influence the microbiota; thus, they can have lasting adverse effects. Herbal drugs offer a generally safe treatment option for uncomplicated infections of the urinary or respiratory tract. Additionally, their microbiota preserving properties allow for a more appropriate therapy of uncomplicated infections, without contributing to an increase in antibiotic resistance or disturbing the gut microbiota. Here, herbal treatments may be a more appropriate therapy, with a generally favorable safety profile.
Collapse
Affiliation(s)
- Bernhard Nausch
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Claudia B. Bittner
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Martina Höller
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Dimitri Abramov-Sommariva
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Moglad EH. Loranthus acaciae: Alternative medicine for β-lactamase producer and methicillin-resistant Staphylococcus aureus. Saudi J Biol Sci 2021; 28:1835-1839. [PMID: 33732069 PMCID: PMC7938108 DOI: 10.1016/j.sjbs.2020.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/02/2022] Open
Abstract
Recently, we reported high antibacterial efficiency of Loranthus acaciae (LA) against different standard strains of bacteria including Methicillin-Resistant Staphylococcus aureus (MRSA). Therefore, this study aimed to confirm the effectiveness of LA against clinically isolated Staphylococcus aureus (SA) including β-lactamase producer (Blac) and MRSA. Forty-eight SA isolates collected from various clinical samples were used in this study. Antibiotics susceptibility profile was determined for twenty different antibiotics using automated Microscan Walkaway 96 Plus system as recommended by Clinical and Laboratory Standards Institute (CLSI) guidelines. This system also identified β-lactamase producers and MRSA. In the meantime, LA ethanolic extract was fractionated using liquid-liquid fraction method to hexane, dichloromethane DCM and methanol 80% fractions. Antimicrobial activities of LA extract and fraction were performed with agar well diffusion method for all SA isolates, MIC and MBC were also recorded. Phytochemical screening for various phyto-constituent classes of LA ethanolic extract was determined. Out of 48 SA isolates, Cefoxitin-positive MRSA represent 31 (64.6%), Blac 17 (35.4%), and 41 (85.4%) were multidrug-resistant SA, which was resistant at least to one antibiotic from three different categories. All isolates were resistant to ampicillin and penicillin. Antimicrobial activities of LA extract and fractions revealed that ethanol extract was active against all isolated SA with inhibition zone ranged from 33 ± 2.00 to 25 ± 3.05 mm. While DCM exhibited the largest inhibition zone range from 37 ± 3.00 to 33 ± 2.00 mm. This study is first of its kind conforming the high antibacterial activity of LA against SA isolated from a different source of infection. The study concluded that LA extract and fractions are active and give positive result for all isolated SA. Therefore, suitable pharmacological formulation of LA extract as a promising antibacterial agent for the treatment of SA infection should be given extreme priority.
Collapse
Key Words
- ATCC, American type culture collection
- Antimicrobial activities
- Blac, β-lactamase producer
- CLSI, clinical and laboratory standards institute
- DCM, Dichloromethane
- LA, Loranthus acaciae
- Loranthus acaciae
- MBC, bactericidal concentration
- MIC, minimum inhibitory concentration
- MRSA
- MRSA, methicillin-resistant Staphylococcus aureus
- MeOH, methanol
- Multi-drug resistant
- Plicosepalus acaciae
- SA, Staphylococcus aureus
- β-lactamase enzyme
Collapse
Affiliation(s)
- Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia.,Department of Microbiology, Medicinal and Aromatic Plants and Traditional Medicine Research Institute (MAPTMRI), National Center for Research, Khartoum, Sudan
| |
Collapse
|
6
|
Chew YL, Mahadi AM, Wong KM, Goh JK. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:70. [PMID: 29463252 PMCID: PMC5819667 DOI: 10.1186/s12906-018-2137-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. METHODS Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated. RESULTS B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds. CONCLUSION Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.
Collapse
Affiliation(s)
- Yik Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, No. 1 Jalan Menara Gading, UCSI Heights, 56000 Kuala Lumpur, Malaysia
| | - Adlina Maisarah Mahadi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Kak Ming Wong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Joo Kheng Goh
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
| |
Collapse
|
7
|
DNA Microarray-Based Screening and Characterization of Traditional Chinese Medicine. MICROARRAYS 2017; 6:microarrays6010004. [PMID: 28146102 PMCID: PMC5374364 DOI: 10.3390/microarrays6010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
The application of DNA microarray assay (DMA) has entered a new era owing to recent innovations in omics technologies. This review summarizes recent applications of DMA-based gene expression profiling by focusing on the screening and characterizationof traditional Chinese medicine. First, herbs, mushrooms, and dietary plants analyzed by DMA along with their effective components and their biological/physiological effects are summarized and discussed by examining their comprehensive list and a list of representative effective chemicals. Second, the mechanisms of action of traditional Chinese medicine are summarized by examining the genes and pathways responsible for the action, the cell functions involved in the action, and the activities found by DMA (silent estrogens). Third, applications of DMA for traditional Chinese medicine are discussed by examining reported examples and new protocols for its use in quality control. Further innovations in the signaling pathway based evaluation of beneficial effects and the assessment of potential risks of traditional Chinese medicine are expected, just as are observed in other closely related fields, such as the therapeutic, environmental, nutritional, and pharmacological fields.
Collapse
|
8
|
Kim KS, Cho DH, Yang HJ, Choi EK, Shin MH, Kim KH, Ahn KS, Ha IJ, Na YC, Um JY, Chung WS, Jung HJ, Jung SK, Jang HJ. Effects of the inhaled treatment of liriope radix on an asthmatic mouse model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:425-41. [PMID: 25967662 DOI: 10.1142/s0192415x15500275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As a treatment for allergic asthma, inhaled treatments such as bronchodilators that contain β2-agonists have an immediate effect, which attenuates airway obstructions and decreases airway hypersensitivity. However, bronchodilators only perform on a one off basis, but not consistently. Asthma is defined as a chronic inflammatory disease of the airways accompanying the overproduction of mucus, airway wall remodeling, bronchial hyperreactivity and airway obstruction. Liriope platyphylla radix extract (LPP), a traditional Korean medicine, has been thoroughly studied and found to be an effective anti-inflammatory medicine. Here, we demonstrate that an inhaled treatment of LPP can attenuate airway hyperresponsiveness (AHR) in an ovalbumin-induced asthmatic mouse model, compared to the saline-treated group (p < 0.01). Moreover, LPP decreases inflammatory cytokine levels, such as eotaxin (p < 0.05), IL-5 (p < 0.05), IL-13 (p < 0.001), RANTES (p < 0.01), and TNF-α (p < 0.05) in the bronchoalveolar lavage (BAL) fluid of asthmatic mice. A histopathological study was carried out to determine the effects of LPP inhalation on mice lung tissue. We performed UPLC/ESI-QTOF-MS, LC/MS, and GC/MS analyses to analyze the chemical constituents of LPP, finding that these are ophiopogonin D, spicatoside A, spicatoside B, benzyl alcohol, and 5-hydroxymethylfurfural. This study demonstrates the effect of an inhaled LPP treatment both on airway AHR and on the inflammatory response in an asthmatic mouse model. Hence, LPP holds significant promise as a nasal inhalant for the treatment of asthmatic airway disease.
Collapse
Affiliation(s)
- Ki-Suk Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim KS, Yang HJ, Lee JY, Na YC, Kwon SY, Kim YC, Lee JH, Jang HJ. Effects of β-sitosterol derived from Artemisia capillaris on the activated human hepatic stellate cells and dimethylnitrosamine-induced mouse liver fibrosis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:363. [PMID: 25262005 PMCID: PMC4193130 DOI: 10.1186/1472-6882-14-363] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 02/06/2023]
Abstract
Background β-sitosterol is a cholesterol-like phytosterol, which widely distributed in the plant kingdom. Here, anti-fibrotic effect of the β-sitosterol was studied using the activated human hepatic stellate cell (HSC) model and dimethylnitrosamine (DMN)-induced mouse hepatic fibrosis model. Method HSCs were activated by transforming growth factor-β (TGF-β) and the collagen-1 and α-smooth muscle actin (α-SMA) expressions were measured at the mRNA and protein level. We also studied the effect β-sitosterol using DMN-induced mouse hepatic fibrosis model. We then measured the collagen-1 and α-SMA expression levels in vivo to investigate anti-hepatofibrotic effect of β-sitosterol, at both of the mRNA and protein level. Results β-sitosterol down regulated the mRNA and protein expression levels of collagen-1 and α-SMA in activated HSC. Oral administration of the β-sitosterol successfully alleviated the DMN-induced mouse liver damage and prevented collagen accumulation. The mRNA and protein expression levels of collagen-1 and α-SMA were also down regulated in β-sitosterol treated mouse group. Conclusions This study shows the effect of β-sitosterol on the TGF-β -or DMN-induced hepatofibrosis. Hence, we demonstrate the β-sitosterol as a potential therapeutic agent for the hepatofibrosis.
Collapse
|
10
|
Cha NH, Jang HJ. Transcriptomic analysis of effects of triclosan on Mycobacterium bovis BCG. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8302-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Shin MH, Park YJ, Kim KS, Cho DH, Uh IJ, Kim KH, Ha IJ, Chung WS, Jung HJ, Jung SK, Jang HJ. The anti-inflammatory effects of Alisma herb extract on allergic asthma mouse model. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0021-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|