1
|
Feng L, A L, Li H, Mu X, Ta N, Bai L, Fu M, Chen Y. Pharmacological Mechanism of Aucklandiae Radix against Gastric Ulcer Based on Network Pharmacology and In Vivo Experiment. Medicina (B Aires) 2023; 59:medicina59040666. [PMID: 37109624 PMCID: PMC10140907 DOI: 10.3390/medicina59040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Background and Objectives: Aucklandiae Radix is a well-known medicinal herb that is often used to treat gastric ulcer, but its molecular mechanism of anti-ulcer action is poorly understood. This research aimed to reveal the potential active components, core targets, and mechanisms of Aucklandiae Radix in treating gastric ulcer by combining network pharmacology and animal experimentation. Materials and Methods: First, a network pharmacology strategy was used to predict the main components, candidate targets, and potential signaling pathways. Molecular docking was then used to confirm the binding affinity between the main components and primary targets. Finally, rats were treated with indomethacin 30 mg/kg to establish a gastric ulcer model. Aucklandiae Radix extract (0.15, 0.3, and 0.6 g/kg) was pre-treated in rats by oral gavage for 14 days, and the protective effect and candidate targets of network pharmacology were validated through morphological observation, pathological staining, and biochemical index detection. Results: A total of eight potential active components and 331 predicted targets were screened from Aucklandiae Radix, 37 of which were common targets with gastric ulcer. According to the component–target network and protein-protein interaction (PPI) network, stigmasterol, mairin, sitosterol, and dehydrocostus lactone were identified as the key components, and RAC-alpha serine/threonine-protein kinase (AKT1), prostaglandin-endoperoxide synthase 2 (PTGS2), interleukin 1 beta (IL1B), caspase-3 (CASP3), and CASP8 were selected as the core targets. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment results revealed the pharmacological mechanism of Aucklandiae Radix against gastric ulcer related to many biological processes and pathways, including antibacterial, anti-inflammatory, prostaglandin receptor response, and apoptosis. Molecular docking verification showed that the key components and core targets had good binding affinities. In the in vivo experiments, Aucklandiae Radix notably relieved the gastric ulcer by reducing the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and myeloperoxidase (MPO) while improving the gastric histopathological features. Conclusion: The overall findings suggest that Aucklandiae Radix treats gastric ulcer with a multi-component, multi-target, and multi-mechanism model.
Collapse
Affiliation(s)
- Lan Feng
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Lisha A
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Huifang Li
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiyele Mu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Na Ta
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Laxinamujila Bai
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Minghai Fu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Correspondence: (M.F.); (Y.C.)
| | - Yongsheng Chen
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
- Correspondence: (M.F.); (Y.C.)
| |
Collapse
|
2
|
Wen S, He L, Zhong Z, Zhao R, Weng S, Mi H, Liu F. Stigmasterol Restores the Balance of Treg/Th17 Cells by Activating the Butyrate-PPARγ Axis in Colitis. Front Immunol 2021; 12:741934. [PMID: 34691046 PMCID: PMC8526899 DOI: 10.3389/fimmu.2021.741934] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with gut microbiota disequilibrium and regulatory T (Treg)/T helper 17 (Th17) immune imbalance. Stigmasterol, a plant-derived sterol, has shown anti-inflammatory effects. Our study aimed to identify the effects of stigmasterol on experimental colitis and the related mechanisms. Stigmasterol treatment restored the Treg/Th17 balance and altered the gut microbiota in a dextran sodium sulfate (DSS)-induced colitis model. Transplantation of the faecal microbiota of stigmasterol-treated mice significantly alleviated inflammation. Additionally, stigmasterol treatment enhanced the production of gut microbiota-derived short-chain fatty acids (SCFAs), particularly butyrate. Next, human naïve CD4+ T cells sorted from IBD patients were cultured under Treg- or Th17-polarizing conditions; butyrate supplementation increased the differentiation of Tregs and decreased Th17 cell differentiation. Mechanistically, butyrate activated peroxisome proliferator-activated receptor gamma (PPARγ) and reprogrammed energy metabolism, thereby promoting Treg differentiation and inhibiting Th17 differentiation. Our results demonstrate that butyrate-mediated PPARγ activation restores the balance of Treg/Th17 cells, and this may be a possible mechanism, by which stigmasterol attenuates IBD.
Collapse
Affiliation(s)
- Shuting Wen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Long He
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuotai Zhong
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runyuan Zhao
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Senhui Weng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Mi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Raidal S, Hughes K. Effect of a novel fermented soy product on gastric ulcer scores in horses. JOURNAL OF APPLIED ANIMAL NUTRITION 2020; 8:105-114. [DOI: 10.3920/jaan2020.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Non-pharmaceutical methods are desirable to treat or prevent gastric ulceration in horses. This two-period, randomised, double-blinded placebo-controlled study was designed to evaluate the efficacy of dietary supplementation (25 g once daily in feed for 30 days) with Fermaid®Ease 187 (FE, Lallemand Australia Pty Ltd, Maroochydore, Australia) on gastric squamous and glandular mucosal ulcer scores in horses. Gastroscopy of 120 horses presented to the Veterinary Clinical Centre at Charles Sturt University (CSU; Bathurst, Australia) or at local training establishments identified 60 horses with spontaneous gastric ulcer disease (50%). Of horses eligible for inclusion, 29 horses were recruited and randomised to receive either the FE or placebo for 30 days. Effects were assessed by repeat gastroscopy (Day 31), at which time horses started the reciprocal treatment. Eleven horses successfully completed both treatment periods. Treatment with FE showed a significant decrease in squamous ulcer scores in period 1 (P=0.008), with a similar effect observed in period 2. No change was observed in squamous ulcer scores for horses receiving placebo treatment in period 1, but increased squamous scores were observed in horses receiving placebo treatment in period 2 (P=0.062). Squamous ulcer scores on Day 31 were significantly lower (P=0.005) following FE treatment than for horses receiving the placebo treatment. No effects were observed on glandular ulcer scores. This study supported the use of FE in horses predisposed to ulceration of the squamous gastric mucosa.
Collapse
Affiliation(s)
- S.L. Raidal
- Charles Sturt University, School of Animal and Veterinary Sciences, Boorooma St, Wagga Wagga, NSW 2650, Australia
| | - K.J. Hughes
- Charles Sturt University, School of Animal and Veterinary Sciences, Boorooma St, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
4
|
Lalitha N, Singh SA. Preparation of horsegram protein concentrate with improved protein quality, in vitro digestibility and available lysine. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2554-2560. [PMID: 32549606 PMCID: PMC7270315 DOI: 10.1007/s13197-020-04292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Horsegram (Macrotyloma uniflorum or Dolichos biflorus), an inexpensive pulse crop with high lysine and iron contents, is underutilized due to the presence of antinutrients like lectin and trypsin inhibitors, which limit protein digestibility and availability. Horsegram protein concentrate (HGPC) was prepared, which had 80.4 ± 3.5% protein and 94.2 ± 1.4% in vitro protein digestibility compared to dehulled horsegram flour (22.8 ± 0.8% and 82.3 ± 1.2%, respectively). Available lysine content in concentrate was increased by 64% compared to dehulled horsegram flour. The trypsin inhibitory activity in the protein concentrate decreased by 51% from 36.6 ± 3.5 TIU/mg in horsegram flour to 17.6 ± 2.5 TIU/mg in HGPC. Nutritional indices, including PDCAAS values for different age groups, were calculated and found to be slightly lower due to the loss of methionine and tryptophan in the concentrate. However, branched amino acids and lysine contents were higher. Thus, a vegetarian source with high protein digestibility and available lysine content could be prepared as a protein ingredient for the food industry.
Collapse
Affiliation(s)
- Nanjaiah Lalitha
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| | - Sridevi Annapurna Singh
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| |
Collapse
|
5
|
Ahmed OAA, Fahmy UA, Bakhaidar R, El-Moselhy MA, Alfaleh MA, Ahmed ASF, Hammad ASA, Aldawsari H, Alhakamy NA. Pumpkin Oil-Based Nanostructured Lipid Carrier System for Antiulcer Effect in NSAID-Induced Gastric Ulcer Model in Rats. Int J Nanomedicine 2020; 15:2529-2539. [PMID: 32346290 PMCID: PMC7167276 DOI: 10.2147/ijn.s247252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Peptic ulcer disease, a painful lesion of the gastric mucosa, is considered one of the most common gastrointestinal disorders. This study aims to investigate the formulation of pumpkin seed oil (PSO)-based nanostructured lipid carriers (NLCs) to utilize PSO as the liquid lipid component of NLCs and to achieve oil dispersion in the nano-range in the stomach. Methods Box–Behnken design was utilized to deduce the optimum formula with minimum particle size. The optimized PSO-NLCs formula was investigated for gastric ulcer protective effects in Wistar rats by evaluating ulcer index and determination of gastric mucosa oxidative stress parameters. Results PSO was successfully incorporated as the liquid lipid (LL) component of NLCs. The prepared optimum PSO-NLCs formula showed a size of 64.3 nm. Pretreatment of animals using the optimized PSO-NLCs formula showed significantly (p< 0.001) lower ulcer index compared to indomethacin alone group and significantly (p<0.05) less mucosal lesions compared to the raw oil. Conclusion These results indicated great potential for future application of optimized PSO-NLCs formula for antiulcer effect in non-steroidal anti-inflammatory drug (NSAID)-induced gastric ulcer.
Collapse
Affiliation(s)
- Osama A A Ahmed
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Usama A Fahmy
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rana Bakhaidar
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A El-Moselhy
- Department of Pharmacology, School of Pharmacy, Ibn Sina National College, Jeddah 22413, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohamed A Alfaleh
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hibah Aldawsari
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Vilahur G, Ben-Aicha S, Diaz-Riera E, Badimon L, Padró T. Phytosterols and Inflammation. Curr Med Chem 2020; 26:6724-6734. [PMID: 29932029 DOI: 10.2174/0929867325666180622151438] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 02/08/2023]
Abstract
Besides the well-characterized effect of foods and supplements enriched with plant sterols/stanols on serum LDL-C concentrations, evidence is now emerging that phytosterols exert beneficial effects on non-lipid variables such as inflammatory and oxidative stress markers, coagulation parameters and endothelial function. This makes sterols and stanols an attractive alternative for dietary interventions in cardiovascular disease prevention, particularly in populations at low or medium risk. This review aims to summarize the current knowledge derived from experimental studies and human data on the anti-inflammatory effects of phytosterols/stanols and their relevance in promoting atheroprotection and preventing cardiovascular disease. The anti-inflammatory effects induced by plant sterols/stanols have been demonstrated in in vitro studies and in experimental animal models. However, not all the beneficial effects seen at an experimental level have translated into clinical benefit. Indeed, clinical studies that evaluate the association between phytosterols consumption and inflammatory variables (CRP and cytokines) are inconsistent and have not yet provided a solid answer. Plant sterols have been proposed as useful adjuncts to statin therapy to further reduce the risk of cardiovascular disease. However, there is limited available data and more research needs to be done.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Barcelona, Spain
| | - Soumaya Ben-Aicha
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Elisa Diaz-Riera
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Barcelona, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
7
|
Elshamy AI, El-Kashak WA, Abdallah HMI, Farrag AH, Nassar MI. Soft coral Cespitularia stolonifera: New cytotoxic ceramides and gastroprotective activity. Chin J Nat Med 2017; 15:105-114. [PMID: 28284424 DOI: 10.1016/s1875-5364(17)30026-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 11/29/2022]
Abstract
In the present study, a new ceramide, namely 2S, 3R-4E, 8E-2-(heptadecanoylamino)-heptadeca-4, 8-diene-1, 3-diol (1), along with four known steroids, including 24-methylcholesta-5, 24(28)-diene-3β-ol (2), 24-methylcholesta-5, 24(28)-diene-3β-acetate (3), 4-methyl-24-methylcholesta-22-ene-3-ol (4), and cholesterol, was isolated and characterized from CH2Cl2/MeOH extract of Cespitularia stolonifera. A new acetate derivative of compound 1, termed 2S, 3R-4E, 8E-2-(heptadecanoylamino)-heptadeca-4, 8-diene-1, 3-diacetate (1a), was also prepared in the present study. All the structures were established on the basis of modern spectroscopic techniques, including FT-IR, 1D, 2D-NMR, HRESI-MS, and GC-MS, in addition of chemical methods. (-)-Alloaromadendren, ledane, (1)-alloaromadendren oxide, isoaromadendrene epoxide and (-)-caryophellen oxide were identified from the n-hexane fraction using GC-MS. The extract and the two ceramides (1) and (1a) exhibited significant cytotoxic activity against lung cancer A549 cells, while the extract and the two steroids (2) and (3) exhibited significant cytotoxic activity against breast cancer MCF-7 cells. The CH2Cl2/MeOH extract exhibited significant antiulcer activity in both ethanol and acetic acid induced ulcer models in rats, as evidenced by histopathological, histochemical, and biochemical examinations.
Collapse
Affiliation(s)
- Abdelsamed I Elshamy
- Natural Compounds Chemistry Department, National Research Centre, Giza 12622, Egypt.
| | - Walaa A El-Kashak
- Natural Compounds Chemistry Department, National Research Centre, Giza 12622, Egypt
| | - Heba M I Abdallah
- Pharmacology Department, National Research Centre, Giza 12622, Egypt
| | | | - Mahmoud I Nassar
- Natural Compounds Chemistry Department, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
8
|
Adzu B, Balogun SO, Pavan E, Ascêncio SD, Soares IM, Aguiar RWS, Ribeiro RV, Beserra ÂMSES, de Oliveira RG, da Silva LI, Damazo AS, Martins DTDO. Evaluation of the safety, gastroprotective activity and mechanism of action of standardised leaves infusion extract of Copaifera malmei Harms. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:378-389. [PMID: 26408044 DOI: 10.1016/j.jep.2015.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/12/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaifera malmei Harms (Fabaceae) is a plant that occurs in the central region of Brazil, where the plant's leaves infusion is popularly used to treat gastric ulcer and inflammatory diseases. This study was aimed to investigate the gastroprotective activity and mode of action of the plants' leaves infusion in order to establish the scientific basis for such usage, and to assess its potential as a source of an anti-ulcer agent. MATERIALS AND METHODS Leaves infusion extract of the plant (SIECm) was prepared, freeze dried and lyophilised. Its qualitative and quantitative phytochemical constituents were investigated using TLC and HPLC techniques. The safety profile was evaluated on CHO-k1 epithelial cells viability using the Alamar blue assay, and by acute toxicity test in mice. The gastroprotection and anti-ulcer efficacy of the SIECm (25, 100 and 400mg/kg, p.o.) were tested using acute (acidified ethanol, piroxicam and water restrain stress), and chronic (acetic acid) experimental ulcer models. The plausible mode of action of the SIECm was assessed using gastric secretion, gastric barrier mucus, nitric oxide, and its antioxidant (myeloperoxidase and catalase) effects in mice and rats. The histopathological analyses of the ulcerated tissues as well as the extract's activity on Helicobacter pylori were also investigated. RESULTS Phytochemical tests indicated the presence of mainly phytosterols, phenolics and flavonoids. The SIECm exhibited no cytotoxic effects on the CHO-k1 cells, and no oral acute toxicity in mice. It prevented against the acute induced ulcerations by enhancing gastroprotection through gastric mucus production, NO modulation, antioxidant, reduced gastric secretion and enhanced chronic ulcers healing process, as shown by reduction/prevention of epithelial and vascular damage, in addition to reduction in leucocyte infiltration. The SIECm however did not exhibit activity against H. pylori. CONCLUSION The SIECm is safe, contain useful phytochemicals and exhibited significant gastroprotective/anti-ulcer effects. The results justify its folkloric usage, and provided scientific evidence of its potential as a source of new phytodrug to treat gastric ulcers.
Collapse
Affiliation(s)
- Bulus Adzu
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria
| | - Sikiru Olaitan Balogun
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Sérgio Donizeti Ascêncio
- Laboratório de Pesquisa em Produtos Naturais, Curso de Medicina, Universidade Federal do Tocantins (UFT), Palmas, Brazil
| | - Ilsamar Mendes Soares
- Laboratório de Pesquisa em Produtos Naturais, Curso de Medicina, Universidade Federal do Tocantins (UFT), Palmas, Brazil
| | | | - Reginaldo Vicente Ribeiro
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | | | - Ruberlei Godinho de Oliveira
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Larissa Irene da Silva
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Amílcar Sabino Damazo
- Área de Histologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | | |
Collapse
|
9
|
Tovey FI. Role of dietary phospholipids and phytosterols in protection against peptic ulceration as shown by experiments on rats. World J Gastroenterol 2015; 21:1377-1384. [PMID: 25663757 PMCID: PMC4316080 DOI: 10.3748/wjg.v21.i5.1377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/24/2014] [Accepted: 12/20/2014] [Indexed: 02/06/2023] Open
Abstract
Geographically the prevalence of duodenal ulceration is related to the staple foods in the diet in regions of developing countries where the diet is stable. It is higher in regions where the diet is based on milled rice, refined wheat or maize, yams, cassava, sweet potato, or green bananas, and is lower in regions where the staple diet is based on unrefined wheat or maize, soya, certain millets or certain pulses. Experiments on rat gastric and duodenal ulcer models showed that it was the lipid fraction in staple foods from low prevalence areas that was protective against both gastric and duodenal ulceration, including ulceration due to non-steroidal anti-inflammatory drugs (NSAIDs). It also promoted ulcer healing. The lipid from the pulse, Dolichos biflorus, horse gram which was highly protective was used to identify the fractions with protective activity in the lipid. The protective activity lay in the phospholipid, sterol and sterol ester fractions. In the phospholipid fraction phosphatidyl choline (lethicin) and phosphatidyl ethanolamine (cephalin) were predominant. In the sterol fraction the sub-fractions showing protective activity contained β-sitosterol, stigmasterol, and an unidentified isomer of β-sitosterol. The evidence from animal models shows that certain dietary phospholipids and phytosterols have a protective action against gastroduodenal ulceration, both singly and in combination. This supports the protective role of staple diets in areas of low duodenal ulcer prevalence and may prove to be of importance in the prevention and treatment of duodenal ulceration and management of recurrent ulcers. A combination of phospholipids and phytosterols could also play an important role in protection against ulceration due to NSAIDs.
Collapse
|
10
|
Kate V, Ananthakrishnan N, Tovey FI. Is Helicobacter pylori Infection the Primary Cause of Duodenal Ulceration or a Secondary Factor? A Review of the Evidence. Gastroenterol Res Pract 2013; 2013:425840. [PMID: 23606834 PMCID: PMC3623110 DOI: 10.1155/2013/425840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/07/2013] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) has a role in the multifactorial etiology of peptic ulcer disease. A link between H. pylori infection and duodenal ulcer disease is now established. Other contributing factors and their interaction with the organism may initiate the ulcerative process. The fact that eradication of H. pylori infection leads to a long-term cure in the majority of duodenal ulcer patients and the fact that the prevalence of infection is higher in ulcer patients than in the normal population are cogent arguments in favor of it being the primary cause of the ulceration. Against this concept there are issues that need explanation such as the reason why only a minority of infected persons develop duodenal ulceration when infection with H. pylori is widespread. There is evidence that H. pylori infection has been prevalent for several centuries, yet duodenal ulceration became common at the beginning of the twentieth century. The prevalence of duodenal ulceration is not higher in countries with a high prevalence of H. pylori infection. This paper debate puts forth the point of view of two groups of workers in this field whether H. pylori infection is the primary cause of duodenal ulcer disease or a secondary factor.
Collapse
Affiliation(s)
- Vikram Kate
- Department of General and Gastrointestinal Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - N. Ananthakrishnan
- Mahatma Gandhi Medical College & Research Institute, Pondicherry 607402, India
| | - Frank I. Tovey
- Division of Surgery and Interventional Science, University College London, London W1W 7ET, UK
| |
Collapse
|