1
|
Mandalari G, Pennisi R, Gervasi T, Sciortino MT. Pistacia vera L. as natural source against antimicrobial and antiviral resistance. Front Microbiol 2024; 15:1396514. [PMID: 39011148 PMCID: PMC11246903 DOI: 10.3389/fmicb.2024.1396514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Increased global research is focused on the development of novel therapeutics to combat antimicrobial and antiviral resistance. Pistachio nuts represent a good source of protein, fiber, monounsaturated fatty acids, minerals, vitamins, and phytochemicals (carotenoids, phenolic acids, flavonoids and anthocyanins). The phytochemicals found in pistachios are structurally diverse compounds with antimicrobial and antiviral potential, demonstrated as individual compounds, extracts and complexed into nanoparticles. Synergistic effects have also been reported in combination with existing drugs. Here we report an overview of the antimicrobial and antiviral potential of pistachio nuts: studies show that Gram-positive bacterial strains, such as Staphylococcus aureus, are the most susceptible amongst bacteria, whereas antiviral effect has been reported against herpes simplex virus 1 (HSV-1). Amongst the known pistachio compounds, zeaxanthin has been shown to affect both HSV-1 attachment penetration of human cells and viral DNA synthesis. These data suggest that pistachio extracts and derivatives could be used for the topical treatment of S. aureus skin infections and ocular herpes infections.
Collapse
Affiliation(s)
- Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Huang X, Li H, Han T, Wang J, Ma Z, Yu X. Isolation and identification of protease-producing Bacillus amyloliquefaciens LX-6 and its application in the solid fermentation of soybean meal. Front Bioeng Biotechnol 2023; 11:1226988. [PMID: 37520297 PMCID: PMC10372485 DOI: 10.3389/fbioe.2023.1226988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Soybean meal (SM) is considered an ideal substitute for fish meal; however, its application is mainly limited because of its antigen proteins, glycinin and β-conglycinin. To improve the value of SM in the aquaculture industry, we employed an aerobic bacterial strain (LX-6) with protease activity of 1,390.6 ± 12.5 U/mL. This strain was isolated from soil samples and identified as Bacillus amyloliquefaciens based on morphological and physiological biochemical characteristics and 16S rDNA gene sequence analyses. Subsequently, we quantified the extent of glycinin and β-conglycinin degradation and the total protein and water-soluble protein content after SM fermentation with B. amyloliquefaciens LX-6. At 24 h of fermentation, the macromolecular antigen proteins of SM were almost completely degraded; the maximum degradation rates of glycinin and β-conglycinin reached 77.9% and 57.1%, respectively. Accordingly, not only did the concentration of water-soluble proteins increase from 5.74% to 44.45% after 48 h of fermentation but so did the concentrations of total protein and amino acids compared to those of unfermented SM. Field emission scanning electron microscopy revealed that the LX-6 strain gradually disrupted the surface structure of SM during the fermentation process. In addition, B. amyloliquefaciens LX-6 exhibited broad-spectrum antagonistic activity and a wide pH tolerance, suggesting its application in SM fermentation for fish meal replacement.
Collapse
Affiliation(s)
- Xinyi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Huijie Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jiteng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Olchowik-Grabarek E, Sękowski S, Kwiatek A, Płaczkiewicz J, Abdulladjanova N, Shlyonsky V, Swiecicka I, Zamaraeva M. The Structural Changes in the Membranes of Staphylococcus aureus Caused by Hydrolysable Tannins Witness Their Antibacterial Activity. MEMBRANES 2022; 12:1124. [PMID: 36363679 PMCID: PMC9698758 DOI: 10.3390/membranes12111124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Polyphenols, including tannins, are phytochemicals with pronounced antimicrobial properties. We studied the activity of two hydrolysable tannins, (i) gallotannin-1,2,3,4,5-penta-O-galloyl-β-D-glucose (PGG) and (ii) ellagitannin-1,2-di-O-galloyl-4,6-valoneoyl-β-D-glucose (dGVG), applied alone and in combination with antibiotics against Staphylococcus aureus strain 8324-4. We also evaluated the effect of these tannins on bacterial membrane integrity and fluidity and studied their interaction with membrane proteins and lipids. A correlation between the antimicrobial activity of the tannins and their membranotropic action depending on the tannin molecular structure has been demonstrated. We found that the antibacterial activity of PGG was stronger than dGVG, which can be associated with its larger flexibility, dipole moment, and hydrophobicity. In addition, we also noted the membrane effects of the tannins observed as an increase in the size of released bacterial membrane vesicles.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Jagoda Płaczkiewicz
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Nodira Abdulladjanova
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Izabela Swiecicka
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| |
Collapse
|
4
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
5
|
Prapaiwong T, Srakaew W, Wachirapakorn C, Jarassaeng C. Effects of hydrolyzable tannin extract obtained from sweet chestnut wood ( Castanea sativa Mill.) against bacteria causing subclinical mastitis in Thai Friesian dairy cows. Vet World 2021; 14:2427-2433. [PMID: 34840463 PMCID: PMC8613771 DOI: 10.14202/vetworld.2021.2427-2433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Aim: Hydrolyzable tannins are an important group of secondary plant metabolites, which are known for antimicrobial activity. This study aimed to assess the efficiency with which a hydrolyzable tannin extract from sweet chestnut wood (Castanea sativa Mill.) could inhibit mastitis-causing bacteria in vitro. Materials and Methods: The negative control used was sterile water, and the positive controls were penicillin and gentamicin. The treatments included five concentrations of hydrolyzable tannins (63, 190, 313, 630, and 940 mg/mL). In cows with subclinical mastitis, the bacteria causing the disease were isolated and identified. Then, the antibacterial activity of the hydrolyzable tannin extract was assessed by the disk diffusion method, by determining the minimum inhibitory concentration (MIC) and by determining the minimum bactericidal concentration (MBC). Results: Penicillin inhibited (p<0.01) the growth of Staphylococcus aureus, Streptococcus uberis, and Pseudomonas aeruginosa but could not inhibit (p>0.05) the growth of Streptococcus agalactiae, Escherichia coli, and Klebsiella pneumoniae. However, gentamicin and hydrolyzable tannins could inhibit (p<0.01) all isolated bacteria. Increasing the concentration of hydrolyzable tannin extract resulted in a quadratic increase in the inhibition zone diameter of S. aureus and S. agalactiae and a linear increase in the inhibition zone diameter of E. coli, K. pneumoniae, and P. aeruginosa. In addition, 630 and 940 mg/mL of hydrolyzable tannin extract showed the highest antibacterial activity against S. agalactiae and E. coli (p<0.01), while 940 mg/mL concentration had the highest antibacterial activity against K. pneumoniae (p<0.01). The MIC and MBC of the extract were 27.3-190 mg/mL and 58.8-235 mg/mL, respectively, with the MBC: MIC ratio being 2:1. Conclusion: The antimicrobial activity of the hydrolyzable tannin extract against subclinical mastitis bacteria was comparable to the antibiotics (positive controls) at concentrations over 630 mg/mL. Although these in vitro findings are promising, further research is needed to determine whether hydrolyzable tannins could be used to control or prevent subclinical mastitis in dairy cows.
Collapse
Affiliation(s)
- Tipwadee Prapaiwong
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttikorn Srakaew
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chalong Wachirapakorn
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaiwat Jarassaeng
- Division of Theriogenology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Farha AK, Yang QQ, Kim G, Li HB, Zhu F, Liu HY, Gan RY, Corke H. Tannins as an alternative to antibiotics. FOOD BIOSCI 2020; 38:100751. [DOI: 10.1016/j.fbio.2020.100751] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Micol V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr Med Chem 2020; 27:2576-2606. [PMID: 30295182 DOI: 10.2174/0929867325666181008115650] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multi-drug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) disseminate rapidly amongst patients in healthcare facilities and suppose an increasingly important cause of community-associated infections and associated mortality. The development of effective therapeutic options against resistant bacteria is a public health priority. Plant polyphenols are structurally diverse compounds that have been used for centuries for medicinal purposes, including infections treatment and possess, not only antimicrobial activity, but also antioxidant, anti-inflammatory and anticancer activities among others. Based on the existing evidence on the polyphenols' antibacterial capacity, polyphenols may be postulated as an alternative or complementary therapy for infectious diseases. OBJECTIVE To review the antimicrobial activity of plant polyphenols against Gram-positive bacteria, especially against S. aureus and its resistant strains. Determine the main bacterial molecular targets of polyphenols and their potential mechanism of action. METHODOLOGY The most relevant reports on plant polyphenols' antibacterial activity and their putative molecular targets were studied. We also performed virtual screening of thousand different polyphenols against proteins involved in the peptidoglycan biosynthesis to find potential valuable bioactive compounds. The bibliographic information used in this review was obtained from MEDLINE via PubMed. RESULTS Several polyphenols: phenolic acids, flavonoids (especially flavonols), tannins, lignans, stilbenes and combinations of these in botanical mixtures, have exhibited significant antibacterial activity against resistant and non-resistant Gram-positive bacteria at low μg/mL range MIC values. Their mechanism of action is quite diverse, targeting cell wall, lipid membrane, membrane receptors and ion channels, bacteria metabolites and biofilm formation. Synergic effects were also demonstrated for some combinations of polyphenols and antibiotics. CONCLUSION Plant polyphenols mean a promising source of antibacterial agents, either alone or in combination with existing antibiotics, for the development of new antibiotic therapies.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - José Antonio Encinar
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - Juan Carlos Rodríguez-Díaz
- Microbiology Section, University General Hospital of Alicante, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante 03010, Spain
| | - Vicente Micol
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain.,CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
| |
Collapse
|
8
|
Gontijo DC, Gontijo PC, Brandão GC, Diaz MAN, de Oliveira AB, Fietto LG, Leite JPV. Antioxidant study indicative of antibacterial and antimutagenic activities of an ellagitannin-rich aqueous extract from the leaves of Miconia latecrenata. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:114-123. [PMID: 30853643 DOI: 10.1016/j.jep.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Ethnopharmacological relevance; Several plant species of Miconia genus are commonly used in Brazilian folk medicine as anti-inflammatory agents and for the treatment of infectious diseases. Infusions and extracts of Miconia species are also reported as analgesic, antimicrobial, antimalarial, antioxidant, anti-inflammatory, antinociceptive, antimutagenic, and antitumoral. Aim of the study; To determine the phytochemical composition of an aqueous extract of Miconia latecrenata leaves and to evaluate its antioxidant, antibacterial, antimutagenic and antigenotoxic activities. Materials and Methods; The following methods were used for the different effects: I) antioxidant - β-carotene/linoleic acid, lipid peroxidation, and DPPH• radical scavenging; II) antibacterial - agar well diffusion and MIC methods); III) antimutagenic assays - Ames Test; and IV) antigenotoxic - Plasmid cleavage test. The phytochemical analysis and phenolic quantification were carried out by UPLC-DAD-ESI-MS/MS and colorimetry, respectively. In addition, statistical correlation analysis was performed aiming to evaluate the Pearson correlation between phenolic compounds and biological assays. Results; A high content of tannins was observed and the ellagitannin isomers of 1,2,3,5-tris-galloyl-4,6-HHDP-glucose were identified as the main constituents of the leaves aqueous extract. High antioxidant effect, in different tests, high antibacterial activity to gram-positive and negative strains, as well as high antimutagenic activity were observed. Statistical analysis showed a high Pearson correlation for the tannin content in relation to the results of the antioxidant and antibacterial tests. In general, the antioxidant action of the aqueous extract showed low correlation with the antimutagenic activity. Conclusions; The present results confirmed the expectations regarding the pharmacological profile of M. latecrenata supporting its therapeutic potential in relation to ROS/RNS related disorders. Furthermore, the phenolic compounds of M. latecrenata can act, in turn, minimizing or inhibiting the biological macromolecules damage, especially DNA.
Collapse
Affiliation(s)
- Douglas Costa Gontijo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n - Campus Universitário, CEP, 36570-000, Viçosa, MG, Brazil
| | - Pablo Costa Gontijo
- Setor de Agronomia, Instituto Federal Goiano, Rodovia Sul Goiana, Km 01, CEP, 75901-970, Rio Verde, GO, Brazil
| | - Geraldo Célio Brandão
- Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/n, CEP, 35400-000, Ouro Preto, MG, Brazil
| | - Marisa Alves Nogueira Diaz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n - Campus Universitário, CEP, 36570-000, Viçosa, MG, Brazil
| | - Alaíde Braga de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| | - Luciano Gomes Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n - Campus Universitário, CEP, 36570-000, Viçosa, MG, Brazil
| | - João Paulo Viana Leite
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n - Campus Universitário, CEP, 36570-000, Viçosa, MG, Brazil.
| |
Collapse
|
9
|
Martos GG, Mamani A, Filippone MP, Abate PO, Katz NE, Castagnaro AP, Díaz Ricci JC. Ellagitannin HeT obtained from strawberry leaves is oxidized by bacterial membranes and inhibits the respiratory chain. FEBS Open Bio 2018; 8:211-218. [PMID: 29435411 PMCID: PMC5794468 DOI: 10.1002/2211-5463.12361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/15/2023] Open
Abstract
Plant secondary metabolism produces a variety of tannins that have a wide range of biological activities, including activation of plant defenses and antimicrobial, anti‐inflammatory and antitumoral effects. The ellagitannin HeT (1‐O‐galloyl‐2,3;4,6‐bis‐hexahydroxydiphenoyl‐β‐d‐glucopyranose) from strawberry leaves elicits a strong plant defense response, and exhibits antimicrobial activity associated to the inhibition of the oxygen consumption, but its mechanism of action is unknown. In this paper we investigate the influence of HeT on bacterial cell membrane integrity and its effect on respiration. A β‐galactosidase unmasking experiment showed that HeT does not disrupt membrane integrity. Raman spectroscopy analysis revealed that HeT strongly interacts with the cell membrane. Spectrochemical analysis indicated that HeT is oxidized in contact with bacterial cell membranes, and functional studies showed that HeT inhibits oxygen consumption, NADH and MTT reduction. These results provide evidence that HeT inhibits the respiratory chain.
Collapse
Affiliation(s)
- Gustavo G Martos
- INSIBIO (CONICET-UNT) and Instituto de Química Biológica San Miguel de Tucuman Argentina
| | - Alicia Mamani
- INSIBIO (CONICET-UNT) and Instituto de Química Biológica San Miguel de Tucuman Argentina
| | - María P Filippone
- Sección Biotecnología de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC) Tucumán Argentina
| | - Pedro O Abate
- INQUINOA (UNT-CONICET) Facultad de Bioquímica Química y Farmacia Universidad Nacional de Tucumán Argentina
| | - Néstor E Katz
- INQUINOA (UNT-CONICET) Facultad de Bioquímica Química y Farmacia Universidad Nacional de Tucumán Argentina
| | - Atilio P Castagnaro
- Sección Biotecnología de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC) Tucumán Argentina
| | - Juan C Díaz Ricci
- INSIBIO (CONICET-UNT) and Instituto de Química Biológica San Miguel de Tucuman Argentina
| |
Collapse
|
10
|
Shimozu Y, Kuroda T, Tsuchiya T, Hatano T. Structures and Antibacterial Properties of Isorugosins H-J, Oligomeric Ellagitannins from Liquidambar formosana with Characteristic Bridging Groups between Sugar Moieties. JOURNAL OF NATURAL PRODUCTS 2017; 80:2723-2733. [PMID: 29019685 DOI: 10.1021/acs.jnatprod.7b00496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Three new ellagitannin oligomers, isorugosins H (1), I (2), and J (3), together with 11 known hydrolyzable tannins were isolated from an aqueous acetone extract of the fresh leaves of Liquidambar formosana. Their chemical structures were elucidated based on spectroscopic data and chemical conversion into known hydrolyzable tannins. The bridging mode of the valoneoyl groups between their sugar moieties has been identified only in this plant species. Additionally, the effects of the isorugosins isolated from this species on drug-resistant bacteria were evaluated and showed that isorugosin A (4) exhibited the most potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The isorugosins also had a suppressing effect on pigment formation in Pseudomonas aeruginosa. The isorugosin-protein complexes were analyzed using size-exclusion chromatography and polyacrylamide gel electrophoresis to clarify the relationship of their antibacterial properties with their protein interaction potency as hydrolyzable tannins. The results suggested that the antibacterial properties of hydrolyzable tannins are not simply a result of their binding activity to proteins, but are due to other factors such as the accessibility of polyphenolic acyl groups to bacterial membranes.
Collapse
Affiliation(s)
- Yuuki Shimozu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama 700-8530, Japan
| | - Teruo Kuroda
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima 734-8553, Japan
| | - Tomofusa Tsuchiya
- College of Pharmaceutical Sciences, Ritsumeikan University , 1-1-1 Nojihigashi, Shiga 525-8577, Japan
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama 700-8530, Japan
| |
Collapse
|
11
|
Shimozu Y, Kimura Y, Esumi A, Aoyama H, Kuroda T, Sakagami H, Hatano T. Ellagitannins of Davidia involucrata. I. Structure of Davicratinic Acid A and Effects of Davidia Tannins on Drug-Resistant Bacteria and Human Oral Squamous Cell Carcinomas. Molecules 2017; 22:E470. [PMID: 28294988 PMCID: PMC6155176 DOI: 10.3390/molecules22030470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/05/2017] [Accepted: 03/12/2017] [Indexed: 11/25/2022] Open
Abstract
We isolated a new ellagitannin, davicratinic acid A (5), together with four known ellagitannins, davidiin (1), granatin A (2), pedunculagin (3), and 3-O-galloylgranatin A (4), from an aqueous acetone extract of dried Davidia involucrata leaves. The known ellagitannins were identified based on spectroscopic data. The structure of davicratinic acid A (5), a monomeric ellagitannin possessing a unique, skew-boat glucopyranose core, was established based on spectroscopic data. Additionally, we examined the effects of several tannins with good yields from this plant on drug-resistant bacteria and human oral squamous cell carcinomas, and found that davidiin (1) exhibited the most potent antibacterial and antitumor properties among the tannins examined.
Collapse
Affiliation(s)
- Yuuki Shimozu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Yuriko Kimura
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Akari Esumi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Hiroe Aoyama
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Teruo Kuroda
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.
| | - Hiroshi Sakagami
- Division of Pharmacology, Department of Diagnostic and Therapeutic Sciences, School of Dentistry, Meikai University, Saitama 350-0283, Japan.
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
12
|
Modulation of mecA Gene Expression by Essential Oil from Salvia sclarea and Synergism with Oxacillin in Methicillin Resistant Staphylococcus epidermidis Carrying Different Types of Staphylococcal Chromosomal Cassette mec. Int J Microbiol 2016; 2016:6475837. [PMID: 26880926 PMCID: PMC4736799 DOI: 10.1155/2016/6475837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/05/2022] Open
Abstract
The essential oil (EO) from Salvia sclarea was shown to increase the susceptibility of methicillin resistant Staphylococcus epidermidis (MRSE) isolates to oxacillin. The purpose of this study was to investigate the effect of EO from S. sclarea on expression of mecA gene of MRSE carrying different types of staphylococcal chromosomal cassette (SCCmec) and to evaluate potential synergistic effect of EO with oxacillin. Using real-time PCR we found that EO alone inhibited the expression of the resistant genes mecA, mecR1, and mecI and blaZ, blaR1, and blaI. The use of the combination of EO with oxacillin resulted in significantly inhibited expression of mecA gene in all tested strains with different types of SCCmec. Using time-kill assay and checkerboard assay we confirmed synergistic effect of EO from S. sclarea and oxacillin in MRSE.
Collapse
|
13
|
Dey D, Ghosh S, Ray R, Hazra B. Polyphenolic Secondary Metabolites Synergize the Activity of Commercial Antibiotics against Clinical Isolates of β-Lactamase-producing Klebsiella pneumoniae. Phytother Res 2015; 30:272-82. [PMID: 26668123 DOI: 10.1002/ptr.5527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022]
Abstract
Emergence of worldwide antimicrobial resistance prompted us to study the resistance modifying potential of plant-derived dietary polyphenols, mainly caffeic acid, ellagic acid, epigallocatechin-3-gallate (EGCG) and quercetin. These compounds were studied in logical combination with clinically significant antibiotics (ciprofloxacin/gentamicin/tetracycline) against Klebsiella pneumoniae, after conducting phenotypic screening of a large number of clinical isolates and selecting the relevant strains possessing extended-spectrum β-lactamase (ESBL) and K. pneumoniae carbapenemase (KPC)-type carbapenemase enzymes only. The study demonstrated that EGCG and caffeic acid could synergize the activity of tested antibiotics within a major population of β-lactamase-producing K. pneumoniae. In spectrofluorimetric assay, ~17-fold greater ciprofloxacin accumulation was observed within K. pneumoniae cells pre-treated with EGCG in comparison with the untreated control, indicating its ability to synergize ciprofloxacin to restrain active drug-efflux. Further, electron micrograph of ESBL-producing K. pneumoniae clearly demonstrated the prospective efficacy of EGCG towards biofilm degradation.
Collapse
Affiliation(s)
- Diganta Dey
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
- Department of Microbiology, Ashok Laboratory Clinical Testing Centre Private Limited, Kolkata, 700068, India
| | - Subhalakshmi Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ratnamala Ray
- Department of Microbiology, Ashok Laboratory Clinical Testing Centre Private Limited, Kolkata, 700068, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
14
|
Santiago C, Lim KH, Loh HS, Ting KN. Prevention of cell-surface attachment and reduction of penicillin-binding protein 2a (PBP2a) level in methicillin-resistant Staphylococcus aureus biofilms by Acalypha wilkesiana. Altern Ther Health Med 2015; 15:79. [PMID: 25880167 PMCID: PMC4376335 DOI: 10.1186/s12906-015-0615-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/16/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Formation of biofilm is known to enhance the virulence of methicillin-resistance Staphylococcus aureus (MRSA), which is associated with persistent infections in hospital settings. The biofilm layer essentially forms a protective barrier encapsulating the bacterial colony and thus reduces the effectiveness of chemotherapeutics. We have isolated 9EA-FC-B bioactive fraction from Acalypha wilkesiana Müll. Arg. that reverses ampicillin resistant in MRSA through inhibition of the antibiotic resistant protein, penicillin-binding protein 2a (PBP2a). In this study, we aimed to investigate the effects of 9EA-FC-B on MRSA biofilm forming capacity. METHODS Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of 9EA-FC-B, while latex agglutination test was performed to investigate the effect on PBP2a in the biofilm matrix. We also attempted to characterise the chemical components of the fraction using high performance liquid chromatography (HPLC) and phytochemical analysis. RESULTS Fraction 9EA-FC-B and ampicillin exhibited similar inhibitory effect on MRSA's biofilm production at their respective minimum inhibitory concentrations (81.56% vs 84.49%, respectively). However, the test fraction was more effective in suppressing cell surface attachment (90.85%) compared to ampicillin (37.8%). Interestingly, ampicillin enhanced the level PBP2a and in the contrary 9EA-FC-B attenuated the production of the resistant protein in the bioflim matrix. HPLC and phytochemical analysis revealed that 9EA-FC-B fraction is a complex mixture containing tannins, saponins, sterol/steroids, and glycosides. CONCLUSIONS Bioactive fraction 9EA-FC-B inhibited the production of MRSA biofilm by preventing the initial cell-surface attachment and reducing the amount PBP2a in the matrix. PBP2a found in the biofilm matrix is believed to have a role in the development of virulence in MRSA.
Collapse
|