1
|
Wen Y, Wu D, Zhang L, Ma S, Lv C. Sesamin targets ClpP which attenuates virulence of S. aureus and protects mice from fatal pneumonia induced by MRSA. J Appl Microbiol 2025; 136:lxaf003. [PMID: 39805732 DOI: 10.1093/jambio/lxaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
AIMS The aim of this study was to identify sesamin as a Casein hydrolase P (ClpP) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA). METHODS AND RESULTS Through fluorescence resonance energy transfer screening, a natural compound sesamin demonstrated a significant inhibitory effect on ClpP enzyme activity with an IC50 of 20.62 μg/ml. Sesamin suppressed the expression of virulence factors of MRSA such as α-hemolysin (Hla) and Panton-Valentine leucocidin by protein immunoblotting. Thermal shift assay and cellular thermal shift assay showed that sesamin could bind to ClpP and enhance the thermal stability of ClpP. Furthermore, the binding affinity between sesamin and ClpP was determined by surface plasmon resonance with a KD value of 7.18 × 10-6 M. Molecular docking, dynamics simulations and point mutation analysis confirmed the stability of the sesamin-ClpP complex with a -10.184 kcal/mol total binding energy and identified PHE-174 in ClpP as a key binding site. In mice pneumonia model, sesamin combined vancomycin treatment markedly reduced the pathogenicity of MRSA-infected mice, offering protection against fatal lung infections. CONCLUSIONS Overall, these findings validate sesamin as a promising compound that targets ClpP, reducing virulence factor expression, that holds potential as a hit compound against MRSA infections.
Collapse
Affiliation(s)
- Yu Wen
- School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Xiangyang District, Jiamusi 154000, China
| | - Duogeng Wu
- Clinical Medical College, Changchun University of Chinese Medicine, 1035 Boshuo Road, Jingyue District, Changchun 130117, China
| | - Luxin Zhang
- Clinical Medical College, Changchun University of Chinese Medicine, 1035 Boshuo Road, Jingyue District, Changchun 130117, China
| | - Shuxia Ma
- School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Xiangyang District, Jiamusi 154000, China
| | - Chao Lv
- School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Xiangyang District, Jiamusi 154000, China
| |
Collapse
|
2
|
Patel K, Patel DK. Biological Potential and Therapeutic Effectiveness of Artemetin from Traditional to Modern Medicine: An Update on Pharmacological Activities and Analytical Aspects. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:265-275. [PMID: 38275071 DOI: 10.2174/0127724344266027231215105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Plant products derived from natural sources have been used in medicine as a raw material and newer kinds of drug molecules in pharmaceuticals and other allied health sectors. Phytochemicals have numerous medicinal potentials, including anti- ageing, anti-carcinogenic, anti-microbial, anti-oxidant, and anti-inflammatory activity in medicine. Development and biological application of herbal products in modern medicine signified the value of traditional medicinal plants in health care systems. METHODS The objective of the present study was to explore the scientific knowledge of the medicinal importance and therapeutic potential of artemetin in medicine. However, scientific investigations for their pharmacological activities in medicine have been done through scientific data analysis of different scientific research work collected from PubMed, Google, Science Direct and Google Scholar in order to know the biological importance of artemetin in medicine. Moreover, analytical data of artemetin have also been discussed in the present work. RESULTS The present work scientific data signified the biological potential of artemetin in medicine. Artemetin has been derived from numerous medicinal plants and dietary herbs, including Artemisia absinthium, Artemisia argyi, Achillea millefolium, and Vitex trifolia. Artemetin has anti-malarial, anti-oxidant, anti-apoptotic, anti-microbial, anti-tumoral, antiatherosclerotic, anti-inflammatory, hypotensive and hepatoprotective effects. Further, the biological role of artemetin on lipid oxidation, cytokine production, lipoxygenase, and estrogen- like effects was also investigated in the present work. Analytical data on artemetin in the present paper signified their important role in the isolation, separation, and identification of different classes of pure phytochemicals, including artemetin in medicine. CONCLUSION Scientific data analysis of artemetin signified its therapeutic potential in medicine for the development of newer scientific approaches for different human disorders.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, Uttar Pradesh, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, Uttar Pradesh, India
| |
Collapse
|
3
|
Rocchi R, Pellegrini M, Pittia P, Pace L. Wild and Micropropagated Artemisia eriantha Infusions: In Vitro Digestion Effects on Phenolic Pattern and Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2023; 13:85. [PMID: 38202393 PMCID: PMC10780599 DOI: 10.3390/plants13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
This study investigated the in vitro simulated gastrointestinal digestion (GID) effects on wild and micropropagated Apennines Genepì infusions. Wild and micropropagated infusions were compared for their antioxidant activity, phenolic contents, and polyphenolic profiles before and after GID. Before digestion, the wild infusions had higher amounts of phenolic compounds and antioxidant activity than the micropropagated ones. Instead, after digestion, the differences in the total phenolic content (TPC) and antioxidant activity between wild and micropropagated infusions were less pronounced. The changes in the TPC and phenolic profiles revealed the presence of several chemical transformations and rearrangements that resulted in compounds with different reactivity and antioxidant potential. Without enzyme actions, the wild infusion digest undergoes higher modifications than those obtained from the micropropagated ones. The current study offers the first concrete proof of the impact of GID on the polyphenolic chemicals present in infusions of wild and micropropagated Apennines Genepì and their antioxidant properties. Our findings are essential for future in-depth analyses of Apennine Genepì infusions and their potential impacts on human health.
Collapse
Affiliation(s)
- Rachele Rocchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy;
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.P.); (L.P.)
| | - Paola Pittia
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Balzarini, 1, 64100 Teramo, Italy
| | - Loretta Pace
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.P.); (L.P.)
| |
Collapse
|
4
|
Romeiras MM, Essoh AP, Catarino S, Silva J, Lima K, Varela E, Moura M, Gomes I, Duarte MC, Duarte MP. Diversity and biological activities of medicinal plants of Santiago island (Cabo Verde). Heliyon 2023; 9:e14651. [PMID: 37009246 PMCID: PMC10060590 DOI: 10.1016/j.heliyon.2023.e14651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Plants continue to constitute key elements of medical practice in West African countries. The Cabo Verde archipelago hosts a great diversity of medicinal plants and local markets are considered important sites for trading plants harvested by rural communities. This study has two main goals: (i) to assess the medicinal uses of native species in Santiago, the biggest island of the archipelago, and (ii) to evaluate the antioxidant, antimicrobial and antidiabetic/antihyperglycemic activities of two native trees (Tamarix senegalensis and Sideroxylon marginatum) used in traditional medicine and traded in local markets. Our results revealed that on Santiago Island, 24 native plants are used in traditional medicine. The main uses of these species (e.g., forage, timber, food and fibres), their medicinal applications, the plant parts used, their mode of administration and conservation status are presented here for the first time. Moreover, the pharmacological characterization of two native tree species revealed that hydroethanolic extracts were richer in phenolic compounds and more active than their aqueous counterparts. All the studied extracts revealed significant antioxidant properties (DPPH and FRAP assays) and were generally moderately active against Gram-positive bacteria. All the extracts inhibited the activities of the carbohydrate digestive enzymes α-glucosidase and α-amylase in a dose-dependent manner. For α-glucosidase, the detected inhibitory activity (IC50 values from 2.0 ± 0.2 μg/mL to 9.9 ± 1.2 μg/mL) was significantly higher than that of acarbose, suggesting that extracts of both species can delay glucose absorption, thereby assisting in slowing down the progression of diabetes. Our findings highlight the crucial importance that medicinal plants have for the Cabo Verdean population, while also raising awareness on the need for sustainable use and conservation of native flora, and of tree species traded in local markets in particular.
Collapse
|
5
|
Essoh AP, Cassiano GC, Mandim F, Barros L, Gomes I, Medeiros MM, Moura M, Cravo PVL, Romeiras MM. Antimalarial and Cytotoxic Activity of Native Plants Used in Cabo Verde Traditional Medicine. PLANTS (BASEL, SWITZERLAND) 2023; 12:963. [PMID: 36840311 PMCID: PMC9964634 DOI: 10.3390/plants12040963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Medicinal plants have historically been a source of drugs in multiple applications, including the treatment of malaria infections. The Cabo Verde archipelago harbors a rich diversity of native plants, most of which are used for medicinal purposes. The present study investigated the in vitro antiplasmodial activities of four native plants from Cabo Verde (i.e., Artemisia gorgonum, Lavandula rotundifolia, Sideroxylon marginatum, and Tamarix senegalensis). Traditional preparations of these medicinal plants, namely aqueous extracts (infusions) and ethanolic extracts, were tested against both chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains using the SYBR Green detection method. The in vitro cytotoxicity was evaluated in Caco-2 and PLP2 cells using a sulforhodamine B colorimetric assay. An ethanolic extract of A. gorgonum and infusions of T. senegalensis exhibited high antiplasmodial activities (EC50 < 5 μg/mL) without cytotoxicity (GI50 > 400 μg/mL). Extracts of L. rotundifolia and S. marginatum exhibited moderate activities, with EC50 values ranging from 10-30 μg/mL. The A. gorgonum ethanolic extract showed activity toward early ring stages, and parasites treated with the T. senegalensis infusions progressed to the early trophozoite stage, although did not develop further to the late trophozoite or schizont stages. Antimalarial activities and the lack of cytotoxicity of the extracts are reported in the present study and support previous claims by traditional practitioners for the use of these plants against malaria while suggesting their ethnopharmacological usefulness as future antimalarials.
Collapse
Affiliation(s)
- Anyse P. Essoh
- Linking Landscape, Environment, Agriculture and Food (LEAF) & Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- UNDP/UNFPA/UNICEF Joint Office of Cabo Verde-Energy, Environment and Climate Change Portfolio, Ed. Nações Unidas, Achada Santo António, Praia P.O. Box 62, Cape Verde
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isildo Gomes
- Instituto Nacional de Investigação e Desenvolvimento Agrário (INIDA), São Jorge dos Órgãos, Santiago CP 84, Cape Verde
| | - Márcia Melo Medeiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal
| | - Mónica Moura
- Research Centre in Biodiversity and Genetic Resources (CIBIO), InBIO Associate Laboratory, Pole of Azores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Pedro Vitor Lemos Cravo
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal
| | - Maria M. Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF) & Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Evaluation of the Polyphenolic Composition and Bioactivities of Three Native Cabo Verde Medicinal Plants. Pharmaceuticals (Basel) 2022; 15:ph15091162. [PMID: 36145383 PMCID: PMC9501242 DOI: 10.3390/ph15091162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/18/2022] Open
Abstract
The use of medicinal plants in a variety of health conditions remains essential for the discovery of new treatments. The present study aimed to investigate the bioactive properties of three native plants from Cabo Verde Islands, namely Artemisia gorgonum Webb, Sideroxylon marginatum (Decne. ex Webb) Cout., and Tamarix senegalensis DC., contributing to the characterization of less-known medicinal plants and their potential benefits for human health. Known compounds, such as kaempferol, quercetin, caffeyolquinic, and apigenin derivatives, among others, were detected in the plant species under study. Overall, all species demonstrated good antioxidant capacity, especially the ethanolic extracts of A. gorgonum (EC50 = 0.149 mg/mL) in TBARS assay. Moreover, the ethanolic extracts of the studied plants showed cytotoxic properties against tumor cells, and again the A. gorgonum extract proved to be the most effective in inhibiting tumor growth, mainly in the CaCO2 (GI50 = 17.3 μg/mL) and AGS (GI50 = 18.2 μg/mL) cell lines. Only the ethanolic extracts of T. senegalensis and S. marginatum demonstrated anti-inflammatory activity, albeit weak (EC50 = 35 and 43 μg/mL, respectively). The present study contributed to increased knowledge about the bioactive properties of these plants commonly used in traditional medicine, some of which was discussed for the first time, opening new perspectives for their use in a wider range of health conditions, especially in African countries, where access to modern health care is more limited.
Collapse
|
7
|
Ferraro G, Belvedere R, Petrella A, Tosco A, Stork B, Salamone S, Minassi A, Pollastro F, Morretta E, Monti MC. Drug affinity-responsive target stability unveils filamins as biological targets for artemetin, an anti-cancer flavonoid. Front Mol Biosci 2022; 9:964295. [PMID: 36090055 PMCID: PMC9452882 DOI: 10.3389/fmolb.2022.964295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Artemetin is a valuable 5-hydroxy-3,6,7,3′,4′-pentamethoxyflavone present in many different medicinal plants with very good oral bioavailability and drug-likeness values, owing to numerous bioactivities, such as anti-inflammatory and anti-cancer ones. Here, a multi-disciplinary plan has been settled and applied for identifying the artemetin target(s) to inspect its mechanism of action, based on drug affinity-responsive target stability and targeted limited proteolysis. Both approaches point to the disclosure of filamins A and B as direct artemetin targets in HeLa cell lysates, also giving detailed insights into the ligand/protein-binding sites. Interestingly, also 8-prenyl-artemetin, which is an artemetin more permeable semisynthetic analog, directly interacts with filamins A and B. Both compounds alter filamin conformation in living HeLa cells with an effect on cytoskeleton disassembly and on the disorganization of the F-actin filaments. Both the natural compound and its derivative are able to block cell migration, expectantly acting on tumor metastasis occurrence and development.
Collapse
Affiliation(s)
- Giusy Ferraro
- Department of Pharmacy, Università di Salerno, Fisciano, Italy
- PhD Program in Drug Discovery and Development, Department of Pharmacy, Università di Salerno, Fisciano, Italy
| | | | | | | | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefano Salamone
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
- PlantaChem Srls, Novara, Italy
| | - Alberto Minassi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
- PlantaChem Srls, Novara, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
- PlantaChem Srls, Novara, Italy
| | - Elva Morretta
- Department of Pharmacy, Università di Salerno, Fisciano, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, Università di Salerno, Fisciano, Italy
- *Correspondence: Maria Chiara Monti,
| |
Collapse
|
8
|
Rosa A, Isola R, Pollastro F, Nieddu M. Effect of the natural polymethoxylated flavone artemetin on lipid oxidation and its impact on cancer cell viability and lipids. Fitoterapia 2021; 156:105102. [PMID: 34921927 DOI: 10.1016/j.fitote.2021.105102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
Abstract
The biochemical class of the polymethoxylated flavonoids represents uncommon phenolic compounds in plants presenting a more marked lipophilic behavior due to the alkylation of its hydroxylic groups. As a polymethoxylated flavone, which concerns a different bioavailability, artemetin (ART) has been examined in vitro against lipid oxidation and its impact on cancer cells has been explored. Despite this flavone only exerted a slight protection against in vitro fatty acid and cholesterol oxidative degradation, ART significantly reduced viability and modulated lipid profile in cancer Hela cells at the dose range 10-50 μM after 72 h of incubation. It induced marked changes in the monounsaturated/saturated phospholipid class, significant decreased the levels of palmitic, oleic and palmitoleic acids, maybe involving an inhibitory effect on de novo lipogenesis and desaturation in cancer cells. Moreover, ART compromised normal mitochondrial function, inducing a noteworthy mitochondrial membrane polarization in cancer cells. A dose-dependent absorption of ART was evidenced in HeLa cell pellets (15.2% of the applied amount at 50 μM), coupled to a marked increase in membrane fluidity, as indicate by the dose-dependent fluorescent Nile Red staining (red emissions). Our results validate the ART role as modulatory agent on cancer cell physiology, especially impacting viability, lipid metabolism, cell fluidity, and mitochondrial potential.
Collapse
Affiliation(s)
- Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Cagliari, Italy.
| | - Raffaella Isola
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Cagliari, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; PlantaChem Srls, via Amico Canobio 4/6, 28100, Novara, Italy
| | - Mariella Nieddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554, Km 4.5, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
9
|
Salamone S, Nieddu M, Khalili A, Sansaro A, Bombardelli E, Rosa A, Pollastro F. Effects of quercetin and artemetin prenylation on bioavailability and bioactivity. Chem Phys Lipids 2021; 240:105137. [PMID: 34529978 DOI: 10.1016/j.chemphyslip.2021.105137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022]
Abstract
Flavonoids are a huge class of polyphenolic compounds ubiquitous in higher plants, in most food and beverages of natural origin. They could be considered as dietary phenols, which exert many health-promoting effects on human and animal physiology with a wide range of biomedical and nutritional functions such as activation or inhibition of enzymes like lipoxygenase and cyclooxygenase, the detoxification of carcinogens and chemoprevention. From a chemical point of view, these aromatic compounds can be divided in six subgroups depending on the position of aromatic B ring on C ring, the degree of unsaturation and oxidation, the position of hydroxyl groups and their functionalization. Between flavonoids, the prenylated ones represent a unique class occurring in nature where the C-prenylation is the most common, whereas O-prenylation is rarely present. The presence of this lipophilic functional group in different positions on the scaffold of flavonoids can sometimes lead to relevant changes in their biological activity due to an increased bioavailability. Capitalizing on the restricted incidence in nature of prenylated flavonoids, we have assessed the synthesis of C- and O-prenylated derivatives starting from two flavonoids, quercetin and artemetin, aimed at the exploration of structure-activity relationships. Results showed that prenylation significantly increased the cytotoxic effect of flavonoids in cancer HeLa cells, also improving their capacity to affect cell phospholipid and fatty acid composition. A marked cell bioavailability increase was demonstrated for the artemetin C-prenylated derivative.
Collapse
Affiliation(s)
- Stefano Salamone
- Dip. Di Scienze del Farmaco, Università del Piemonte Orientale, l̥Largo Donegani 2/3, 28100 Novara, Italy
| | - Mariella Nieddu
- Dip. di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, l̥SS 554, Km 4.5, 09042 Monserrato, Cagliari, Italy
| | - Adil Khalili
- Dip. Di Scienze del Farmaco, Università del Piemonte Orientale, l̥Largo Donegani 2/3, 28100 Novara, Italy
| | - Andrea Sansaro
- Dip. Di Scienze del Farmaco, Università del Piemonte Orientale, l̥Largo Donegani 2/3, 28100 Novara, Italy
| | | | - Antonella Rosa
- Dip. di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, l̥SS 554, Km 4.5, 09042 Monserrato, Cagliari, Italy.
| | - Federica Pollastro
- Dip. Di Scienze del Farmaco, Università del Piemonte Orientale, l̥Largo Donegani 2/3, 28100 Novara, Italy; PlantaChem S.R.L.S., l̥via Amico Canobio 4/6, 28100 Novara, Italy.
| |
Collapse
|
10
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
11
|
Duarte AC, Santos J, Costa AR, Ferreira CL, Tomás J, Quintela T, Ishikawa H, Schwerk C, Schroten H, Ferrer I, Carro E, Gonçalves I, Santos CRA. Bitter taste receptors profiling in the human blood-cerebrospinal fluid-barrier. Biochem Pharmacol 2020; 177:113954. [PMID: 32251676 DOI: 10.1016/j.bcp.2020.113954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023]
Abstract
The choroid plexus (CP) epithelial cells establish an important blood-brain interface, the blood-cerebrospinal fluid barrier (BCSFB), which constitutes a complementary gateway to the blood-brain-barrier for the entrance of several molecules into the central nervous system (CNS). However, the mechanisms that operate at the BCSFB to regulate the molecular traffic are still poorly understood. The taste signalling machinery, present in many extra-oral tissues, is involved in the chemical sensing of the composition of body fluids. We have identified this pathway in rat CP and hypothesised that it could also be present in the human BCSFB. In this study, we characterised the bitter taste receptors (TAS2Rs) expression profiling in human CP by combining data retrieved from available databases of the human CP transcriptome with its expression analysis in a human CP cell line and immunohistochemistry of human CP sections from men and women. TAS2R4, 5, 14 and 39 expression was confirmed in human CP tissue by immunohistochemistry and in HIBCPP cells by RT-PCR, immunofluorescence and Western blot. Moreover, the presence of downstream effector proteins GNAT3, PLCβ2 and TRPM5 was also detected in HIBCPP cells. Then, we demonstrated that HIBCPP cells respond to chloramphenicol via TAS2R39 and to quercetin via TAS2R14. Our findings support an active role of TAS2Rs at the human BCSFB, as surveyors of the bloodstream and CSF compositions. These findings open new avenues for studies on the uptake of relevant compounds for targeted therapies of the CNS.
Collapse
Affiliation(s)
- Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - José Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Catarina L Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Neuropathology, Bellvitge University Hospital-IDIBELL, CIBERNED, Hospitalet de Llobregat, Spain
| | - Eva Carro
- Instituto de Investigacion Hospital 12 de Octubre (i+12), Network Center for Biomedical Research in Neurodegenerative Diseases. CIBERNED, Madrid, Spain
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
12
|
Taleghani A, Emami SA, Tayarani-Najaran Z. Artemisia: a promising plant for the treatment of cancer. Bioorg Med Chem 2020; 28:115180. [DOI: 10.1016/j.bmc.2019.115180] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/28/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
|
13
|
Langa E, Pardo JI, Giménez-Rota C, González-Coloma A, Hernáiz MJ, Mainar AM. Supercritical anti-solvent fractionation of Artemisia absinthium L. conventional extracts: tracking artemetin and casticin. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Dylenova EP, Randalova TE, Tykheev ZA, Zhigzhitzhapova SV, Radnaeva LD. Artemisia jacutica Drob. as the source of terpenoids. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/320/1/012054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Influence of the in vitro gastrointestinal digestion on the antioxidant activity of Artemisia gorgonum Webb and Hyptis pectinata (L.) Poit. infusions from Cape Verde. Food Res Int 2018; 115:150-159. [PMID: 30599926 DOI: 10.1016/j.foodres.2018.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/25/2018] [Accepted: 08/10/2018] [Indexed: 01/28/2023]
Abstract
The phenolic profile and antioxidant activity of Cape Verde's Artemisia gorgonum Webb and Hyptis pectinata (L.) Poit. infusions before and after in vitro simulation of the gastrointestinal digestion were determined. The LC-UV/DAD fingerprinting analysis allowed the identification of 3-O-caffeoylquinic acid, chlorogenic acid, 3,5 dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid and other caffeoylquinic acids derivatives on A. gorgonum infusion, and of caffeoylquinic acid and quercetin derivatives on H. pectinata infusion. Despite some decrease in the chromatographic area of several peaks, no relevant qualitative alterations on the chromatographic profile were observed between the digested and undigested herbal infusions. Results obtained showed a decrease on the antioxidant capacity of both tested herbal infusions after the in vitro digestion. This decrease was more pronounced for H. pectinata than for A. gorgonum and was also more pronounced regarding the radical scavenging capacity than regarding the reducing capacity. After complete digestion the superoxide anion and the DPPH-radical scavenging capacities decreased ≈ 43 and 75% for H. pectinata and ≈ 31 and 70% for A. gorgonum. Despite the observed differences before and after simulated gastrointestinal digestion, both infusions still had antioxidant activity at the end of this process. Thus, the antioxidant potential of A. gorgonum and H. pectinata infusions from Cape Verde, prepared as traditionally used, seems to be kept in some extend throughout the digestive system.
Collapse
|
16
|
Yeo SK, Ali AY, Hayward OA, Turnham D, Jackson T, Bowen ID, Clarkson R. β-Bisabolene, a Sesquiterpene from the Essential Oil Extract of Opoponax (Commiphora guidottii), Exhibits Cytotoxicity in Breast Cancer Cell Lines. Phytother Res 2015; 30:418-25. [PMID: 26666387 DOI: 10.1002/ptr.5543] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/11/2015] [Accepted: 11/21/2015] [Indexed: 11/09/2022]
Abstract
The essential oils from Commiphora species have for centuries been recognized to possess medicinal properties. Here, we performed gas chromatography-mass spectrometry on the essential oil from opoponax (Commiphora guidotti) and identified bisabolene isomers as the main constituents of this essential oil. Opoponax essential oil, a chemical component; β-bisabolene and an alcoholic analogue, α-bisabolol, were tested for their ability to selectively kill breast cancer cells. Only β-bisabolene, a sesquiterpene constituting 5% of the essential oil, exhibited selective cytotoxic activity for mouse cells (IC50 in normal Eph4: >200 µg/ml, MG1361: 65.49 µg/ml, 4T1: 48.99 µg/ml) and human breast cancer cells (IC50 in normal MCF-10A: 114.3 µg/ml, MCF-7: 66.91 µg/ml, MDA-MB-231: 98.39 µg/ml, SKBR3: 70.62 µg/ml and BT474: 74.3 µg/ml). This loss of viability was because of the induction of apoptosis as shown by Annexin V-propidium iodide and caspase-3/7 activity assay. β-bisabolene was also effective in reducing the growth of transplanted 4T1 mammary tumours in vivo (37.5% reduction in volume by endpoint). In summary, we have identified an anti-cancer agent from the essential oil of opoponax that exhibits specific cytotoxicity to both human and murine mammary tumour cells in vitro and in vivo, and this warrants further investigation into the use of β-bisabolene in the treatment of breast cancers.
Collapse
Affiliation(s)
- Syn Kok Yeo
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Ahmed Y Ali
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Olivia A Hayward
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Daniel Turnham
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Troy Jackson
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Ifor D Bowen
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Richard Clarkson
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| |
Collapse
|
17
|
Grossini E, Marotta P, Farruggio S, Sigaudo L, Qoqaiche F, Raina G, de Giuli V, Mary D, Vacca G, Pollastro F. Effects of Artemetin on Nitric Oxide Release and Protection against Peroxidative Injuries in Porcine Coronary Artery Endothelial Cells. Phytother Res 2015; 29:1339-1348. [PMID: 26032176 DOI: 10.1002/ptr.5386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 12/27/2022]
Abstract
Artemetin is one of the main components of Achillea millefolium L. and Artemisia absinthium, which have long been used for the treatment of various diseases. To date, however, available information about protective effects of their extracts on the cardiovascular system is scarce. Therefore, we planned to analyze the effects of artemetin on nitric oxide (NO) release and the protection exerted against oxidation in porcine aortic endothelial (PAE) cells. In PAE, we examined the modulation of NO release caused by artemetin and the involvement of muscarinic receptors, β2-adrenoreceptors, estrogenic receptors (ER), protein-kinase A, phospholipase-C, endothelial-NO-synthase (eNOS), Akt, extracellular-signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen activated protein kinase (p38 MAPK). Moreover, in cells treated with hydrogen peroxide, the effects of artemetin were examined on cell survival, glutathione (GSH) levels, apoptosis, mitochondrial membrane potential and transition pore opening. Artemetin increased eNOS-dependent NO production by the involvement of muscarinic receptors, β2-adrenoreceptors, ER and all the aforementioned kinases. Furthermore, artemetin improved cell viability in PAE that were subjected to peroxidation by counteracting GSH depletion and apoptosis and through the modulation of mitochondrial function. In conclusion, artemetin protected endothelial function by acting as antioxidant and antiapoptotic agent and through the activation of ERK1/2 and Akt. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Patrizia Marotta
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Serena Farruggio
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Lorenzo Sigaudo
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Fatima Qoqaiche
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Giulia Raina
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Veronica de Giuli
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - David Mary
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Giovanni Vacca
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University of Eastern Piedmont 'A. Avogadro', Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Federica Pollastro
- Dept. Drug Sciences, University East Piedmont 'A. Avogadro', Largo Donegani 2, Novara, Italy
| |
Collapse
|
18
|
Ivanescu B, Miron A, Corciova A. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:247685. [PMID: 26495156 PMCID: PMC4606394 DOI: 10.1155/2015/247685] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 05/07/2023]
Abstract
Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analgesic, antiulcer, antibacterial, antifungal, antiviral, antiparasitic, and insect deterrent. Many of the biological activities are attributed to the α-methylene-γ-lactone group in their molecule which reacts through a Michael-addition with free sulfhydryl or amino groups in proteins and alkylates them. Due to the fact that most sesquiterpene lactones are thermolabile, less volatile compounds, they present no specific chromophores in the molecule and are sensitive to acidic and basic mediums, and their identification and quantification represent a difficult task for the analyst. Another problematic aspect is represented by the complexity of vegetal samples, which may contain compounds that can interfere with the analysis. Therefore, this paper proposes an overview of the methods used for the identification and quantification of sesquiterpene lactones found in Artemisia genus, as well as the optimal conditions for their extraction and separation.
Collapse
Affiliation(s)
- Bianca Ivanescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700150 Iasi, Romania
- *Bianca Ivanescu:
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700150 Iasi, Romania
| | - Andreia Corciova
- Department of Drug Analysis, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700150 Iasi, Romania
| |
Collapse
|