1
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Qi D, Li H, Liang C, Peng P, Yang Z, Gao Y, Li Z, Zhang Q, Liu Z. Herb-drug interaction of Xingnaojing injection and Edaravone via pharmacokinetics, mixed inhibition of UGTs, and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154696. [PMID: 36764095 DOI: 10.1016/j.phymed.2023.154696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Xingnaojing injection (XNJ) is a famous emergency Traditional Chinese medicine (TCM) derived from the classical Chinese prescription named An-Gong-Niu-Huang Pill. XNJ is often used along with Edaravone injection (EDA) to treat acute ischemic stroke, they have a synergistic effect in improving patients' blood coagulation and neurological function. However, this combination also causes herb-drug interactions (HDIs), raising the risk of adverse reactions. At present, little is known about the pharmacokinetics and potential mechanism of XNJ combined with EDA. PURPOSE This study investigates the pharmacokinetics and potential mechanism of the HDIs between XNJ and EDA. STUDY DESIGN AND METHODS The pharmacokinetic interactions between XNJ and EDA were studied by GC-MS in rats, and the inhibition of XNJ and (-)-borneol on UDP-glucuronosyltransferase (UGTs) were assayed by LC-MS/MS in vitro. In vitro-in vivo extrapolation (IVIVE) and molecular docking were performed to reveal the potential for HDIs. RESULTS The AUC0-∞ of (-)-borneol was increased by 1.25-fold in group EDA+XNJ 10 min later, and the Cmax of edaravone was increased by 1.6-fold in group XNJ+EDA 10 min later (p < 0.05). XNJ and (-)-borneol inhibited UGTs-mediated edaravone metabolism in HLM and RLM with a similar inhibitory intensity, in which both of them have stronger inhibition in RLM. These findings demonstrated that (-)-borneol in XNJ mainly exerted UGTs inhibition, which was consistent with the pharmacokinetic assays. (-)-Borneol moderately inhibited UGT2B7 and UGT1A6 by a mixed inhibition mechanism, with Ki values of 101.393 and 136.217 μM, respectively. Due to the blood concentration of injection was dramatically increased, the HDIs caused by the inhibitory effect of XNJ on UGTs should be highly emphasized. The binding energies of (-)-borneol and edaravone toward UGT2B7 were -6.254 and -6.643 kcal/mol, and the scores towards UGT1A6 were -5.220 and -6.469 kcal/mol, respectively. Moreover, (-)-borneol has similar free energies to many drugs metabolized by UGT2B7 and UGT1A6. CONCLUSIONS (-)-Borneol modulates the pharmacokinetic behavior of edaravone via mixed inhibition of UGT2B7 and UGT1A6. It provides a theoretical basis for the synergistic effect of XNJ and EDA combinations in clinical practice. When XNJ is used along with UGT2B7 and UGT1A6 substrates, it should be used clinically with caution.
Collapse
Affiliation(s)
- Dongli Qi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huihui Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxia Liang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peijin Peng
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanquan Gao
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ziwei Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingqing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Li Y, Zhang W, Yin T, Wang C, Wang F, Sun J, Liu L, Zhang Q, Zhang C. Inhibition of UDP-glucuronosyltransferases by different furoquinoline alkaloids. Xenobiotica 2020; 50:1170-1179. [PMID: 32367776 DOI: 10.1080/00498254.2020.1760400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Herbs are often administered in combination with therapeutic drugs, raising the possibility for herb-drug interactions (HDIs). Furoquinoline alkaloids are found in Rutaceae plants, which are structurally similar and have many medicinal properties. This study aims to investigate the inhibition of four furoquinoline alkaloids on the activity of UDP-glucuronosyltransferases (UGTs).The recombinant UGTs-catalyzed glucuronidation metabolism of 4-methylumbelliferone (4-MU) was utilized to investigate the inhibition potential. Inhibition type and parameters were determined, and in silico docking was employed to elucidate the inhibition difference of furoquinoline alkaloids towards UGTs.Dictamine, haplopine, γ-fagarine and skimmianine strongly inhibited UGT1A3, UGT1A7, UGT1A9 and UGT2B4, respectively. Among them, dictamnine inhibited more than 70% of the four UGTs. Inhibition kinetics determination showed that they all exerted competitive inhibition, and the inhibition kinetic constant (Ki) was determined to be 8.3, 7.2, 3.7 and 33.9 μM, respectively. In vitro-in vivo extrapolation (IVIVE) was employed to demonstrate the inhibition possibility for four alkaloids. Skimmianine was proved to be more suitable for clinical application. In silico docking study indicated that the hydrophobic interactions played a key role in the inhibition of furoquinoline alkaloids towards three of the four UGTs. In conclusion, monitoring the interactions between furoquinoline alkaloids and drugs mainly undergoing UGTs-catalyzed metabolism is necessary.
Collapse
Affiliation(s)
- Yixuan Li
- School of integrative medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Weihua Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Tingting Yin
- School of integrative medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Ce Wang
- Basic Medical College, Hebei North University, Hebei, China
| | - Feige Wang
- School of integrative medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Sun
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lina Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Qinghuai Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| |
Collapse
|
4
|
Sun D, Zhang CZ, Ran RX, Cao YF, Du Z, Fu ZW, Huang CT, Zhao ZY, Zhang WH, Fang ZZ. In Vitro Comparative Study of the Inhibitory Effects of Mangiferin and Its Aglycone Norathyriol towards UDP-Glucuronosyl Transferase (UGT) Isoforms. Molecules 2017. [PMID: 28621744 PMCID: PMC6152678 DOI: 10.3390/molecules22061008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera Indica L., has been investigated extensively because of its remarkable pharmacological effects. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used to investigate the inhibition of mangiferin and aglycone norathyriol towards various isoforms of UGTs in our study, which evaluated the inhibitory capacity of MGF and its aglycone norathyriol (NTR) towards UDP-glucuronosyltransferase (UGT) isoforms. Initial screening experiment showed that deglycosylation of MGF into NTR strongly increased the inhibitory effects towards almost all the tested UGT isoforms at a concentration of 100 μM. Kinetic experiments were performed to further characterize the inhibition of UGT1A3, UGT1A7 and UGT1A9 by NTR. NTR competitively inhibited UGT1A3, UGT1A7 and UGT1A9, with an IC50 value of 8.2, 4.4, and 12.3 μM, and a Ki value of 1.6, 2.0, and 2.8 μM, respectively. In silico docking showed that only NTR could dock into the activity cavity of UGT1A3, UGT1A7 and UGT1A9. The binding free energy of NTR to UGT1A3, 1A7, 1A9 were −7.4, −7.9 and −4.0 kcal/mol, respectively. Based on the inhibition evaluation standard ([I]/Ki < 0.1, low possibility; 0.1 < [I]/Ki < 1, medium possibility; [I]/Ki > 1, high possibility), an in vivo herb–drug interaction between MGF/NTR and drugs mainly undergoing UGT1A3-, UGT1A7- or UGT1A9-catalyzed metabolism might occur when the plasma concentration of NTR is above 1.6, 2.0 and 2.8 μM, respectively.
Collapse
Affiliation(s)
- Dan Sun
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China.
| | - Rui-Xue Ran
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Yun-Feng Cao
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou 121001, Liaoning, China.
| | - Zuo Du
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou 121001, Liaoning, China.
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Zhi-Wei Fu
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou 121001, Liaoning, China.
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Chun-Ting Huang
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou 121001, Liaoning, China.
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Zhen-Ying Zhao
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, China.
| | - Wei-Hua Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China.
| | - Zhong-Ze Fang
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou 121001, Liaoning, China.
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
5
|
Yang N, Sun R, Liao X, Aa J, Wang G. UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine. Pharmacol Res 2017; 121:169-183. [PMID: 28479371 DOI: 10.1016/j.phrs.2017.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are the primary phase II enzymes catalyzing the conjugation of glucuronic acid to the xenobiotics with polar groups for facilitating their clearance. The UGTs belong to a superfamily that consists of diverse isoforms possessing distinct but overlapping metabolic activity. The abnormality or deficiency of UGTs in vivo is highly associated with some diseases, efficacy and toxicity of drugs, and precisely therapeutic personality. Despite the great effects and fruitful results achieved, to date, the expression and functions of individual UGTs have not been well clarified, the inconsistency of UGTs is often observed in human and experimental animals, and the complex regulation factors affecting UGTs have not been systematically summarized. This article gives an overview of updated reports on UGTs involving the various regulatory factors in terms of the genetic, environmental, pathological, and physiological effects on the functioning of individual UGTs, in turn, the dysfunction of UGTs induced disease risk and endo- or xenobiotic metabolism-related toxicity. The complex cross-talk effect of UGTs with internal homeostasis is systematically summarized and discussed in detail, which would be of great importance for personalized precision medicine.
Collapse
Affiliation(s)
- Na Yang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Liao
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Xu J, Chen HB, Li SL. Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Med Res Rev 2017; 37:1140-1185. [PMID: 28052344 DOI: 10.1002/med.21431] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023]
Abstract
Herbal medicines (HMs) are much appreciated for their significant contribution to human survival and reproduction by remedial and prophylactic management of diseases. Defining the scientific basis of HMs will substantiate their value and promote their modernization. Ever-increasing evidence suggests that gut microbiota plays a crucial role in HM therapy by complicated interplay with HM components. This interplay includes such activities as: gut microbiota biotransforming HM chemicals into metabolites that harbor different bioavailability and bioactivity/toxicity from their precursors; HM chemicals improving the composition of gut microbiota, consequently ameliorating its dysfunction as well as associated pathological conditions; and gut microbiota mediating the interactions (synergistic and antagonistic) between the multiple chemicals in HMs. More advanced experimental designs are recommended for future study, such as overall chemical characterization of gut microbiota-metabolized HMs, direct microbial analysis of HM-targeted gut microbiota, and precise gut microbiota research model development. The outcomes of such research can further elucidate the interactions between HMs and gut microbiota, thereby opening a new window for defining the scientific basis of HMs and for guiding HM-based drug discovery.
Collapse
Affiliation(s)
- Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, P.R. China.,Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, 210028, P.R. China
| |
Collapse
|