1
|
Li Z, Yao L, Liu Z, Wang L, Ruan H, Shen Y, Zhang P, Li K, Wang H, Fan L, Tu L, Feng J. Andrographolide Sulfonates and Xiyanping: A Review of Chemical Composition, Pharmacological Activities, Clinical Applications, and Adverse Reactions. Pharmaceuticals (Basel) 2025; 18:183. [PMID: 40005997 PMCID: PMC11859262 DOI: 10.3390/ph18020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Andrographis paniculata is a plant of the Acanthaceae family and its primary bioactive constituent, andrographolide, exhibits a broad spectrum of pharmacological activities and notable clinical efficacy. However, its poor solubility and limited bioavailability pose significant challenges for therapeutic applications. To overcome these limitations, researchers have synthesized andrographolide sulfonates by reacting andrographolide with ethanol and sulfuric acid. This sulfonated derivative significantly enhances water solubility and bioavailability while retaining key pharmacological properties such as anti-inflammatory and antiviral activities. As a representative formulation, Xiyanping injection has been widely employed in the treatment of respiratory infections, pneumonia, and related conditions, playing a critical role during the COVID-19 pandemic. Despite its widespread application, there has yet to be a comprehensive review of its chemical composition and pharmacological mechanisms. Additionally, the safety of Xiyanping injection remains a topic of some debate. This review systematically examines the chemical composition, pharmacological activities, clinical applications, and adverse reactions of andrographolide sulfonates and their formulation in Xiyanping injection to provide a scientific basis for further research and applications, while also offering valuable insights for the development of similar sulfonated drugs.
Collapse
Affiliation(s)
- Zihong Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Lihao Yao
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhenjie Liu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Liuping Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Huini Ruan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Yuanle Shen
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Peng Zhang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Kaitong Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Honglan Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Lili Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jianfang Feng
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| |
Collapse
|
2
|
Tian Y, Zhang S, Ni F. Targeting glucose metabolism for HPV-associated cervical cancer: A sweet poison. Biomed Pharmacother 2024; 180:117519. [PMID: 39378679 DOI: 10.1016/j.biopha.2024.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
More than 99 % of precancerous cervical lesions are associated with human papillomavirus (HPV) infection, with HPV types 16 and 18 (especially type 16) found in over 70 % of cervical cancer cases globally. The growth of HPV-positive cervical cancer depends on the sustained expression of the viral oncogenes E6 and E7, which are key factors in maintaining the malignant phenotype of HPV-positive tumor cells. E6 and E7 oncoproteins can cause the degradation of the tumor suppressor gene p53 and the inactivation of pRb, respectively, thereby inducing carcinogenesis. However, the inhibition of p53 and pRb cannot fully explain the oncogenic mechanism of cervical cancer. Although the development of the HPV vaccine has controlled the incidence of HPV infection, its application and widespread adoption remain limited. In addition, many developing countries cannot afford the cost of vaccines. More importantly, the vaccine only prevents HPV infection and does not provide an effective treatment for patients who are already infected or have cervical cancer. Therefore, HPV-related diseases, especially cervical cancer, remain a serious challenge. This article reviews the role of glucose metabolism changes and key molecular events in HPV-induced cervical cancer, summarizes potential targets for the treatment of cervical cancer, and provides strategies for future clinical treatment. It also offers a theoretical basis for research into cervical cancer and other HPV-related tumors. Furthermore, we discuss potential treatments for HPV-associated cervical cancer through targeted metabolic pathways and analyze the risks and challenges of current targeted glucose metabolism therapies for cervical cancer.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Anesthesiology, Shenzhen Longhua District Central Hospital, China.
| | - Songyang Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Fushun Ni
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Long Z, Xiang W, Xiao W, Min Y, Qu F, Zhang B, Zeng L. Advances in the study of artemisinin and its derivatives for the treatment of rheumatic skeletal disorders, autoimmune inflammatory diseases, and autoimmune disorders: a comprehensive review. Front Immunol 2024; 15:1432625. [PMID: 39524446 PMCID: PMC11543433 DOI: 10.3389/fimmu.2024.1432625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Artemisinin and its derivatives are widely recognized as first-line treatments for malaria worldwide. Recent studies have demonstrated that artemisinin-based antimalarial drugs, such as artesunate, dihydroartemisinin, and artemether, not only possess excellent antimalarial properties but also exhibit antitumor, antifungal, and immunomodulatory effects. Researchers globally have synthesized artemisinin derivatives like SM735, SM905, and SM934, which offer advantages such as low toxicity, high bioavailability, and potential immunosuppressive properties. These compounds induce immunosuppression by inhibiting the activation of pathogenic T cells, suppressing B cell activation and antibody production, and enhancing the differentiation of regulatory T cells. This review summarized the mechanisms by which artemisinin and its analogs modulate excessive inflammation and immune responses in rheumatic and skeletal diseases, autoimmune inflammatory diseases, and autoimmune disorders, through pathways including TNF, Toll-like receptors, IL-6, RANKL, MAPK, PI3K/AKT/mTOR, JAK/STAT, and NRF2/GPX4. Notably, in the context of the NF-κB pathway, artemisinin not only inhibits NF-κB expression by disrupting upstream cascades and/or directly binding to NF-κB but also downregulates multiple downstream genes controlled by NF-κB, including inflammatory chemokines and their receptors. These downstream targets regulate various immune cell functions, apoptosis, proliferation, signal transduction, and antioxidant responses, ultimately intervening in systemic autoimmune diseases and autoimmune responses in organs such as the kidneys, nervous system, skin, liver, and biliary system by modulating immune dysregulation and inflammatory responses. Ongoing multicenter randomized clinical trials are investigating the effects of these compounds on rheumatic, inflammatory, and autoimmune diseases, with the aim of translating promising preclinical data into clinical applications.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Yu Min
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Qu
- Department of Acupuncture and Massage, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Liuting Zeng
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Dai Y, Liang Y, Liu C, Liu T, Chen L, Li Y. Can artemisinin and its derivatives treat malaria in a host-directed manner? Biochem Pharmacol 2024; 225:116260. [PMID: 38705539 DOI: 10.1016/j.bcp.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Malaria is caused by an apicomplexan protozoan parasite, Plasmodium, and is transmitted through vectors. It remains a substantial health burden, especially in developing countries, leading to significant socioeconomic losses. Although the World Health Organization (WHO) has approved various antimalarial medications in the past two decades, the increasing resistance to these medications has worsened the situation. The development of drug resistance stems from genetic diversity among Plasmodium strains, impeding eradication efforts. Consequently, exploring innovative technologies and strategies for developing effective medications based on the host is crucial. Artemisinin and its derivatives (artemisinins) have been recommended by the WHO for treating malaria owing to their known effectiveness in killing the parasite. However, their potential to target the host for malaria treatment has not been investigated. This article concisely reviews the application of host-directed therapeutics, potential drug candidates targeting the host for treating malaria, and usage of artemisinins in numerous diseases. It underscores the importance of host-directed interventions for individuals susceptible to malaria, suggests the potential utility of artemisinins in host-directed malaria treatments, and posits that the modulation of host proteins with artemisinins may offer a means of intervening in host-parasite interactions. Further studies focusing on the host-targeting perspective of artemisinins can provide new insights into the mechanisms of artemisinin resistance and offer a unique opportunity for new antimalarial drug discovery.
Collapse
Affiliation(s)
- Yue Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengcheng Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tuo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Liu Q, Chen X, Tan Y, Liu J, Zhu M, Li D, Zhou Y, Zhang T, Yin QZ. Natural products as glycolytic inhibitors for cervical cancer treatment: A comprehensive review. Biomed Pharmacother 2024; 175:116708. [PMID: 38723515 DOI: 10.1016/j.biopha.2024.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Cervical cancer, a prevalent gynaecological malignancy, presents challenges in late-stage treatment efficacy. Aerobic glycolysis, a prominent metabolic trait in cervical cancer, emerges as a promising target for novel drug discovery. Natural products, originating from traditional medicine, represent a significant therapeutic avenue and primary source for new drug development. This review explores the regulatory mechanisms of glycolysis in cervical cancer and summarises natural compounds that inhibit aerobic glycolysis as a therapeutic strategy. The glycolytic phenotype in cervical cancer is regulated by classical molecules such as HIF-1, HPV virulence factors and specificity protein 1, which facilitate the Warburg effect in cervical cancer. Various natural products, such as artemisinin, shikonin and kaempferol, exert inhibitory effects by downregulating key glycolytic enzymes through signalling pathways such as PI3K/AKT/HIF-1α and JAK2/STAT3. Despite challenges related to drug metabolism and toxicity, these natural compounds provide novel insights and promising avenues for cervical cancer treatment.
Collapse
Affiliation(s)
- Qun Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiuhan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yurong Tan
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jiao Liu
- Nantong University, Nantong 226019, China
| | - Mingya Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Delin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yijie Zhou
- Anyue County Traditional Chinese Medicine Hospital, Ziyang 610072, China.
| | - Tiane Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Qiao Zhi Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
6
|
Rathi K, Hassam M, Singh C, Puri SK, Jat JL, Prakash Verma V. Novel ether derivatives of 11-azaartemisinins with high order antimalarial activity against multidrug-resistant Plasmodium yoelii in Swiss mice. Bioorg Med Chem Lett 2024; 103:129700. [PMID: 38479483 DOI: 10.1016/j.bmcl.2024.129700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
This study investigates cutting-edge synthetic chemistry approaches for designing and producing innovative antimalarial drugs with improved efficacy and fewer adverse effects. Novel amino (-NH2) and hydroxy (-OH) functionalized 11-azaartemisinins 9, 12, and 14 were synthesized along with their derivatives 11a, 13a-e, and 15a-b through ART and were tested for their AMA (antimalarial activity) against Plasmodium yoelii via intramuscular (i.m.) and oral routes in Swiss mice. Ether derivative 13c was the most active compound by i.m. route, it has shown 100 % protection at the dose of 12 mg/kg × 4 days and showed 100 % clearance of parasitaemia on day 4 at dose of 6 mg/kg. Amine 11a, ether derivatives 13d, 13e and ether 15a also showed promising antimalarial activity. β-Arteether gave 100 % protection at the dose of 48 mg/kg × 4 days and 20 % protection at 24 mg/kg × 4 days dose by oral route, while it showed 100 % protection at 6 mg/kg × 4 days and no protection at 3 mg/kg × 4 days by i.m. route.
Collapse
Affiliation(s)
- Komal Rathi
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Mohammad Hassam
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Chandan Singh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sunil K Puri
- Parasitology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jawahar L Jat
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India; Department of Education in Science and Mathematics (DESM), Regional Institute of Education, Bhubaneshwar 751022, India.
| |
Collapse
|
7
|
Negri S, Pietrolucci F, Andreatta S, Chinyere Njoku R, Antunes Silva Nogueira Ramos C, Crimi M, Commisso M, Guzzo F, Avesani L. Bioprospecting of Artemisia genus: from artemisinin to other potentially bioactive compounds. Sci Rep 2024; 14:4791. [PMID: 38413638 PMCID: PMC10899597 DOI: 10.1038/s41598-024-55128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Fabio Pietrolucci
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | | | - Ruth Chinyere Njoku
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
| | | | - Massimo Crimi
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
8
|
Rathi K, Shukla M, Hassam M, Shrivastava R, Rawat V, Prakash Verma V. Recent advances in the synthesis and antimalarial activity of 1,2,4-trioxanes. Bioorg Chem 2024; 143:107043. [PMID: 38134523 DOI: 10.1016/j.bioorg.2023.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The increasing resistance of various malarial parasite strains to drugs has made the production of a new, rapid-acting, and efficient antimalarial drug more necessary, as the demand for such drugs is growing rapidly. As a major global health concern, various methods have been implemented to address the problem of drug resistance, including the hybrid drug concept, combination therapy, the development of analogues of existing medicines, and the use of drug resistance reversal agents. Artemisinin and its derivatives are currently used against multidrug- resistant P. falciparum species. However, due to its natural origin, its use has been limited by its scarcity in natural resources. As a result, finding a substitute becomes more crucial, and the peroxide group in artemisinin, responsible for the drugs biological action in the form of 1,2,4-trioxane, may hold the key to resolving this issue. The literature suggests that 1,2,4-trioxanes have the potential to become an alternative to current malaria drugs, as highlighted in this review. This is why 1,2,4-trioxanes and their derivatives have been synthesized on a large scale worldwide, as they have shown promising antimalarial activity in vivo and in vitro against Plasmodium species. Consequently, the search for a more convenient, environment friendly, sustainable, efficient, and effective synthetic pathway for the synthesis of 1,2,4-trioxanes continues. The aim of this work is to provide a comprehensive analysis of the synthesis and mechanism of action of 1,2,4-trioxanes. This systematic review highlights the most recent summaries of derivatives of 1,2,4-trioxane compounds and dimers with potential antimalarial activity from January 1988 to 2023.
Collapse
Affiliation(s)
- Komal Rathi
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Monika Shukla
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | | | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan 30300, India
| | - Varun Rawat
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India.
| |
Collapse
|
9
|
Zhong H, Jiang Q, Wu C, Yu H, Li B, Zhou X, Fu R, Wang W, Sheng W. Design, Synthesis, and Antitumor Activity Evaluation of Artemisinin Bivalent Ligands. Molecules 2024; 29:409. [PMID: 38257322 PMCID: PMC10818997 DOI: 10.3390/molecules29020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Five artemisinin bivalent ligands molecules 4a-4e were designed, synthesized, and confirmed by 1H NMR, 13C NMR, and low-resolution mass spectrometry, and the bioactivities of the target compounds were investigated against four human tumor cell lines in vitro, including BGC-823, HepG-2, MCF-7, and HCT-116. The results showed 4a, 4d, and 4e exhibited significantly tumor cell inhibitory activity compared with the artemisinin and dihydroartemisinin; compound 4e has good biological activity inhibiting BGC-823 with an IC50 value of 8.30 μmol/L. Then, the good correlations with biological results were validated by molecular docking through the established bivalent ligands multi-target model, which showed that 4e could bind well with the antitumor protein MMP-9.
Collapse
Affiliation(s)
- Hui Zhong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
| | - Qi Jiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
| | - Cong Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
| | - Huanghe Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xudong Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ronggeng Fu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (H.Z.); (Q.J.); (C.W.); (H.Y.); (B.L.); (X.Z.); (R.F.)
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
10
|
Xu W, Zou X, Zha Y, Zhang J, Bian H, Shen Z. Novel Bis-Artemisinin-Phloroglucinol hybrid molecules with dual anticancer and immunomodulatory Activities: Synthesis and evaluation. Bioorg Chem 2023; 139:106705. [PMID: 37406517 DOI: 10.1016/j.bioorg.2023.106705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Bis-(10-deoxydihydroartemisinin)-phloroglucinol (9), has been synthesized in a one-step reaction and has demonstrated strong inhibition to cancer cell proliferation and immunosuppressive activity. The structure modification of the compound reduced its cytotoxicity, and among the analogs, bis-(10-deoxydihydroartemisinin)-phloroglucinol phenyl decanoate (16) showed significant reduction of ear swelling in a mouse model for DNFB-induced delayed-type hypersensitivity without observable toxicity in a dose-dependent manner.
Collapse
Affiliation(s)
- Wei Xu
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Yufeng Zha
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Jinghua Zhang
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongzhu Bian
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China.
| |
Collapse
|
11
|
He XL, Chen JY, Feng YL, Song P, Wong YK, Xie LL, Wang C, Zhang Q, Bai YM, Gao P, Luo P, Liu Q, Liao FL, Li ZJ, Jiang Y, Wang JG. Single-cell RNA sequencing deciphers the mechanism of sepsis-induced liver injury and the therapeutic effects of artesunate. Acta Pharmacol Sin 2023; 44:1801-1814. [PMID: 37041228 PMCID: PMC10462669 DOI: 10.1038/s41401-023-01065-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/16/2023] [Indexed: 04/13/2023]
Abstract
Liver, as an immune and detoxification organ, represents an important line of defense against bacteria and infection and a vulnerable organ that is easily injured during sepsis. Artesunate (ART) is an anti-malaria agent, that also exhibits broad pharmacological activities including anti-inflammatory, immune-regulation and liver protection. In this study, we investigated the cellular responses in liver to sepsis infection and ART hepatic-protective mechanisms against sepsis. Cecal ligation and puncture (CLP)-induced sepsis model was established in mice. The mice were administered ART (10 mg/kg, i.p.) at 4 h, and sacrificed at 12 h after the surgery. Liver samples were collected for preparing single-cell RNA transcriptome sequencing (scRNA-seq). The scRNA-seq analysis revealed that sepsis-induced a dramatic reduction of hepatic endothelial cells, especially the subtypes characterized with proliferation and differentiation. Macrophages were recruited during sepsis and released inflammatory cytokines (Tnf, Il1b, Il6), chemokines (Ccl6, Cd14), and transcription factor (Nfkb1), resulting in liver inflammatory responses. Massive apoptosis of lymphocytes and abnormal recruitment of neutrophils caused immune dysfunction. ART treatment significantly improved the survival of CLP mice within 96 h, and partially relieved or reversed the above-mentioned pathological features, mitigating the impact of sepsis on liver injury, inflammation, and dysfunction. This study provides comprehensive fundamental proof for the liver protective efficacy of ART against sepsis infection, which would potentially contribute to its clinical translation for sepsis therapy. Single cell transcriptome reveals the changes of various hepatocyte subtypes of CLP-induced liver injury and the potential pharmacological effects of artesunate on sepsis.
Collapse
Affiliation(s)
- Xue-Ling He
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Jia-Yun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yu-Lin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ping Song
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Lu-Lin Xie
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yun-Meng Bai
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Peng Gao
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Piao Luo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiang Liu
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, and Cardiovascular Pharmacology Division of Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Fu-Long Liao
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Jie Li
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Ji-Gang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
12
|
Makhmudiyarova NN, Ishmukhametova IR, Tyumkina TV, Mescheryakova ES, Dzhemileva L, D'yakonov V, Terent'ev AO, Dzhemilev UM. Multicomponent Assembly of Bicyclic Aza-peroxides Catalyzed by Samarium Complexes and Their Cytotoxic Activity. J Org Chem 2023; 88:11473-11485. [PMID: 37557189 DOI: 10.1021/acs.joc.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
An original strategy toward bridged tetraoxazaspirobicycloalkanes was developed. The synthesis is based on a three-component condensation-cyclization reaction of primary arylamines with 1,1'-peroxybis (1-hydroperoxycycloalkanes) and pentane-1,5-dial catalyzed by Sm(NO3)3·6H2O. The structures and conformations of the products were determined by X-ray diffraction analysis and 1H and 13C NMR spectroscopy. High cytotoxic activity and biological potential toward ferroptosis induction were found for the synthesized bicyclic aza-peroxides.
Collapse
Affiliation(s)
- Nataliya N Makhmudiyarova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prospekt Oktyabrya, 450075 Ufa, Russian Federation
| | - Irina R Ishmukhametova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prospekt Oktyabrya, 450075 Ufa, Russian Federation
| | - Tatyana V Tyumkina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prospekt Oktyabrya, 450075 Ufa, Russian Federation
| | - Ekaterina S Mescheryakova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prospekt Oktyabrya, 450075 Ufa, Russian Federation
| | - Lilya Dzhemileva
- N.D. Zelinsky Institute of Organic Chemistry, 47, Leninsky prospekt, 119991 Moscow, Russian Federation
| | - Vladimir D'yakonov
- N.D. Zelinsky Institute of Organic Chemistry, 47, Leninsky prospekt, 119991 Moscow, Russian Federation
| | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, 47, Leninsky prospekt, 119991 Moscow, Russian Federation
| | - Usein M Dzhemilev
- N.D. Zelinsky Institute of Organic Chemistry, 47, Leninsky prospekt, 119991 Moscow, Russian Federation
| |
Collapse
|
13
|
Tsamesidis I, Theocharidou A, Beketova A, Bousnaki M, Chatzimentor I, Pouroutzidou GK, Gkiliopoulos D, Kontonasaki E. Artemisinin Loaded Cerium-Doped Nanopowders Improved In Vitro the Biomineralization in Human Periodontal Ligament Cells. Pharmaceutics 2023; 15:pharmaceutics15020655. [PMID: 36839977 PMCID: PMC9962187 DOI: 10.3390/pharmaceutics15020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A promising strategy to enhance bone regeneration is the use of bioactive materials doped with metallic ions with therapeutic effects and their combination with active substances and/or drugs. The aim of the present study was to investigate the osteogenic capacity of human periodontal ligament cells (hPDLCs) in culture with artemisinin (ART)-loaded Ce-doped calcium silicate nanopowders (NPs); Methods: Mesoporous silica, calcium-doped and calcium/cerium-doped silicate NPs were synthesized via a surfactant-assisted cooperative self-assembly process. Human periodontal ligament cells (hPDLCs) were isolated and tested for their osteogenic differentiation in the presence of ART-loaded and unloaded NPs through alkaline phosphatase (ALP) activity and Alizarine red S staining, while their antioxidant capacity was also evaluated; Results: ART promoted further the osteogenic differentiation of hPDLCs in the presence of Ce-doped NPs. Higher amounts of Ce in the ART-loaded NPs inversely affected the mineral deposition process by the hPDLCs. ART and Ce in the NPs have a synergistic role controlling the redox status and reducing ROS production from the hPDLCs; Conclusions: By monitoring the Ce amount and ART concentration, mesoporous NPs with optimum properties can be developed towards bone tissue regeneration demonstrating also potential application in periodontal tissue regeneration strategies.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: or
| | - Anna Theocharidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Beketova
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Iason Chatzimentor
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia K. Pouroutzidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Advanced Materials and Devices (AMDeLab), School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Abedi B, Tayefi-Nasrabadi H, Kianifard D, Basaki M, Shahbazfar AA, Piri A, Dolatyarieslami M. The effect of co-administration of artemisinin and N-acetyl cysteine on antioxidant status, spermatological parameters and histopathology of testis in adult male mice. Horm Mol Biol Clin Investig 2023:hmbci-2022-0050. [PMID: 36749578 DOI: 10.1515/hmbci-2022-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/22/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This in vivo study aimed to evaluate the effect of various concentrations of artemisinin (Art) alone or together with N-acetyl cysteine (NAC) on spermatological indices, antioxidant status, and histopathological parameters of testicular tissue in adult male mice. METHODS Six groups of five healthy male mice (25-30 g) were randomly assigned to different experimental groups. These groups received DMSO and corn oil (0.1%) as an Art solvent (Control), 50 mg kg-1 Art (Art-50), 250 mg kg-1 Art (Art-250), 50 mg kg-1 Art + 150 mg kg-1 NAC (Art-50+NAC-150), 250 mg kg-1 Art + 150 mg kg-1 NAC (Art-250+NAC-150) and 150 mg kg-1 NAC (NAC-150) for a period of 7 days. Testes and epididymis were prepared to evaluate the malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), spermatological indices, and histological parameters. RESULTS We showed that the high dose of Art (Art-250) significantly reduced the sperm count, motility, viability, and the activity of CAT and increased the levels of MDA compared to the control group. Also, the overdose of Art caused adverse changes in testicular tissue. Co-administration of NAC with Art (Art-250+NAC-150) corrected the adverse effects of Art. CONCLUSIONS The current study reports that a high dose of Art affects, spermatological parameters, antioxidant/stress oxidative status of the male reproductive system, and NAC is capable neutralize all adverse effects caused by Art.
Collapse
Affiliation(s)
- Behnaz Abedi
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Tayefi-Nasrabadi
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Davoud Kianifard
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mehdi Basaki
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Aiyoub Piri
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mahdi Dolatyarieslami
- Department of Basic sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Kisler K, Sagare AP, Lazic D, Bazzi S, Lawson E, Hsu CJ, Wang Y, Ramanathan A, Nelson AR, Zhao Z, Zlokovic BV. Anti-malaria drug artesunate prevents development of amyloid-β pathology in mice by upregulating PICALM at the blood-brain barrier. Mol Neurodegener 2023; 18:7. [PMID: 36707892 PMCID: PMC9883925 DOI: 10.1186/s13024-023-00597-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND PICALM is one of the most significant susceptibility factors for Alzheimer's disease (AD). In humans and mice, PICALM is highly expressed in brain endothelium. PICALM endothelial levels are reduced in AD brains. PICALM controls several steps in Aβ transcytosis across the blood-brain barrier (BBB). Its loss from brain endothelium in mice diminishes Aβ clearance at the BBB, which worsens Aβ pathology, but is reversible by endothelial PICALM re-expression. Thus, increasing PICALM at the BBB holds potential to slow down development of Aβ pathology. METHODS To identify a drug that could increase PICALM expression, we screened a library of 2007 FDA-approved drugs in HEK293t cells expressing luciferase driven by a human PICALM promoter, followed by a secondary mRNA screen in human Eahy926 endothelial cell line. In vivo studies with the lead hit were carried out in Picalm-deficient (Picalm+/-) mice, Picalm+/-; 5XFAD mice and Picalmlox/lox; Cdh5-Cre; 5XFAD mice with endothelial-specific Picalm knockout. We studied PICALM expression at the BBB, Aβ pathology and clearance from brain to blood, cerebral blood flow (CBF) responses, BBB integrity and behavior. RESULTS Our screen identified anti-malaria drug artesunate as the lead hit. Artesunate elevated PICALM mRNA and protein levels in Eahy926 endothelial cells and in vivo in brain capillaries of Picalm+/- mice by 2-3-fold. Artesunate treatment (32 mg/kg/day for 2 months) of 3-month old Picalm+/-; 5XFAD mice compared to vehicle increased brain capillary PICALM levels by 2-fold, and reduced Aβ42 and Aβ40 levels and Aβ and thioflavin S-load in the cortex and hippocampus, and vascular Aβ load by 34-51%. Artesunate also increased circulating Aβ42 and Aβ40 levels by 2-fold confirming accelerated Aβ clearance from brain to blood. Consistent with reduced Aβ pathology, treatment of Picalm+/-; 5XFAD mice with artesunate improved CBF responses, BBB integrity and behavior on novel object location and recognition, burrowing and nesting. Endothelial-specific knockout of PICALM abolished all beneficial effects of artesunate in 5XFAD mice indicating that endothelial PICALM is required for its therapeutic effects. CONCLUSIONS Artesunate increases PICALM levels and Aβ clearance at the BBB which prevents development of Aβ pathology and functional deficits in mice and holds potential for translation to human AD.
Collapse
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Abhay P. Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Divna Lazic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Sam Bazzi
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Erica Lawson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Ching-Ju Hsu
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Yaoming Wang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Anita Ramanathan
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Amy R. Nelson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Zhen Zhao
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| |
Collapse
|
16
|
Chen L, Yu S, Hong S, Lin X, Zhu X, Cao X, Li Y, Xiao H. Therapeutic role of Artemether in the prevention of hepatic steatosis through miR‐34a‐5p/PPARα pathway. Drug Dev Res 2022; 84:156-171. [PMID: 36541217 DOI: 10.1002/ddr.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Artemether (ATM) is a natural antimalarial drug that can also regulate glucose and lipid metabolism. However, little is known regarding its pharmacological action in metabolic dysfunction-associated fatty liver disease (MAFLD), and the underlying mechanisms remain undetermined. The aim of this study was to explore the therapeutic effects of ATM against hepatic steatosis and the possible mechanisms. ATM significantly decreased blood glucose levels, improved glucose tolerance, reduced inflammatory response, and alleviated hepatic steatosis in the ob/ob mouse model as well as the high-fat diet-fed mice. ATM also inhibited lipid accumulation in murine hepatocytes in vitro. Using RNA sequencing, miR-34a-5p and peroxisome proliferator-activated receptor-α (PPARα) were identified as important regulators during ATM treatment. ATM administration downregulated miR-34a-5p expression and miR-34a-5p abrogated the inhibitory effects of ATM on PO (palmitate + oleate)-induced lipid accumulation as well as triglycerides levels in murine hepatocytes. Furthermore, the expression of PPARα, a target gene of miR-34a-5p, was upregulated by ATM and PPARα inhibitor MK-886 abolished the positive effect of ATM. Consequently, PPARα agonist fenofibrate reversed the decreased mitochondrial fatty acid β-oxidation induced by miR-34a-5p mimics after ATM treatment, thereby leading to attenuation of intracellular lipid accumulation. Taken together, ATM is a promising therapeutic agent against MAFLD that reduces lipid deposition by suppressing miR-34a-5p and upregulating PPARα.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology The First Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Shuang Yu
- Department of Endocrinology The First Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Shubing Hong
- Department of Endocrinology The First Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Xia Lin
- State Key Laboratory for Respiratory Diseases Guangzhou Medical University Guangzhou China
| | - Xiaonan Zhu
- Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Xiaopei Cao
- Department of Endocrinology The First Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Yanbing Li
- Department of Endocrinology The First Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Haipeng Xiao
- Department of Endocrinology The First Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
17
|
Chen J, Lin X, He J, Liu D, He L, Zhang M, Luan H, Hu Y, Tao C, Wang Q. Artemisitene suppresses rheumatoid arthritis progression via modulating METTL3-mediated N6-methyladenosine modification of ICAM2 mRNA in fibroblast-like synoviocytes. Clin Transl Med 2022; 12:e1148. [PMID: 36536495 PMCID: PMC9763537 DOI: 10.1002/ctm2.1148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease. We previously revealed that the natural compound artemisitene (ATT) exhibits excellent broad anticancer activities without toxicity on normal tissues. Nevertheless, the effect of ATT on RA is undiscovered. Herein, we aim to study the effect and potential mechanism of ATT on RA management. METHODS A collagen-induced arthritis (CIA) mouse model was employed to confirm the anti-RA potential of ATT. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays, cell cycle and apoptosis analysis, immunofluorescence, migration and invasion assays, quantitative real-time PCR (RT-qPCR), Western blot, RNA-sequencing (RNA-seq) analysis, plasmid construction and lentivirus infection, and methylated RNA immunoprecipitation and chromatin immunoprecipitation assays, were carried out to confirm the effect and potential mechanism of ATT on RA management. RESULTS ATT relieved CIA in mice. ATT inhibited proliferation and induced apoptosis of RA-fibroblast-like synoviocytes (FLSs). ATT restrained RA-FLSs migration and invasion via suppressing epithelial-mesenchymal transition. RNA-sequencing analysis and bioinformatics analysis identified intercellular adhesion molecule 2 (ICAM2) as a promoter of RA progression in RA-FLSs. ATT inhibits RA progression by suppressing ICAM2/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/p300 pathway in RA-FLSs. Moreover, ATT inhibited methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine methylation of ICAM2 mRNA in RA-FLSs. Interestingly, p300 directly facilitated METTL3 transcription, which could be restrained by ATT in RA-FLSs. Importantly, METTL3, ICAM2 and p300 expressions in synovium tissues of RA patients were related to clinical characteristics and therapy response. CONCLUSIONS We provided strong evidence that ATT has therapeutic potential for RA management by suppressing proliferation, migration and invasion, in addition to inducing apoptosis of RA-FLSs through modulating METTL3/ICAM2/PI3K/AKT/p300 feedback loop, supplying the fundamental basis for the clinical application of ATT in RA therapy. Moreover, METTL3, ICAM2 and p300 might serve as biomarkers for the therapy response of RA patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Xian Lin
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Juan He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Dandan Liu
- School of Basic Medical ScienceGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Lianhua He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Miaomiao Zhang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Huijie Luan
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Yiping Hu
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Cheng Tao
- School of PharmacyGuangdong Medical UniversityDongguanGuangdongChina
| | - Qingwen Wang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| |
Collapse
|
18
|
Opportunities and Challenges of in vitro Synthetic Biosystem for Terpenoids Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA. Therapeutic potential of chrysin nanoparticle-mediation inhibition of succinate dehydrogenase and ubiquinone oxidoreductase in pancreatic and lung adenocarcinoma. Eur J Med Res 2022; 27:172. [PMID: 36076266 PMCID: PMC9461199 DOI: 10.1186/s40001-022-00803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) and lung cancer are expected to represent the most common cancer types worldwide until 2030. Under typical conditions, mitochondria provide the bulk of the energy needed to sustain cell life. For that inhibition of mitochondrial complex ΙΙ (CΙΙ) and ubiquinone oxidoreductase with natural treatments may represent a promising cancer treatment option. A naturally occurring flavonoid with biological anti-cancer effects is chyrsin. Due to their improved bioavailability, penetrative power, and efficacy, chitosan–chrysin nano-formulations (CCNPs) are being used in medicine with increasing frequency. Chitosan (cs) is also regarded as a highly versatile and adaptable polymer. The cationic properties of Cs, together with its biodegradability, high adsorption capacity, biocompatibility, effect on permeability, ability to form films, and adhesive properties, are advantages. In addition, Cs is thought to be both safe and economical. CCNPs may indeed be therapeutic candidates in the treatment of pancreatic adenocarcinoma (PDAC) and lung cancer by blocking succinate ubiquinone oxidoreductase.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
20
|
Agrawal PK, Agrawal C, Blunden G. Artemisia Extracts and Artemisinin-Based Antimalarials for COVID-19 Management: Could These Be Effective Antivirals for COVID-19 Treatment? Molecules 2022; 27:3828. [PMID: 35744958 PMCID: PMC9231170 DOI: 10.3390/molecules27123828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/23/2022] Open
Abstract
As the world desperately searches for ways to treat the coronavirus disease 2019 (COVID-19) pandemic, a growing number of people are turning to herbal remedies. The Artemisia species, such as A. annua and A. afra, in particular, exhibit positive effects against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and COVID-19 related symptoms. A. annua is a source of artemisinin, which is active against malaria, and also exhibits potential for other diseases. This has increased interest in artemisinin's potential for drug repurposing. Artemisinin-based combination therapies, so-called ACTs, have already been recognized as first-line treatments against malaria. Artemisia extract, as well as ACTs, have demonstrated inhibition of SARS-CoV-2. Artemisinin and its derivatives have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe COVID-19. There is now sufficient evidence in the literature to suggest the effectiveness of Artemisia, its constituents and/or artemisinin derivatives, to fight against the SARS-CoV-2 infection by inhibiting its invasion, and replication, as well as reducing oxidative stress and inflammation, and mitigating lung damage.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Gerald Blunden
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK;
| |
Collapse
|
21
|
Lai JW, Maah MJ, Sarip R, Lim YAL, Tim KL, Ng CH. Potency of copper(II) complexes towards drug-sensitive and -resistant Plasmodium falciparum: structure-activity relationship, ROS-generation and proteasome inhibition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Derrong Lin I, Hertig JB. Pharmacy Leadership Amid the Pandemic: Maintaining Patient Safety During Uncertain Times. Hosp Pharm 2022; 57:323-328. [PMID: 35615490 PMCID: PMC9125128 DOI: 10.1177/00185787211037545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
Abstract
The relentless surges of global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections that caused the Covid-19 disease had pressured researchers and regulators to develop effective treatments quickly. While studying these therapies amid the pandemic, threats to patient care were reported, including (1) maintaining adequate safeguards as clinical effectiveness and safety data evolves, (2) risks from online counterfeit medications, and (3) disruption of the global pharmaceutical supply chain. This article discusses these patient safety threats and suggests strategies that promote patient safety, foster medication intelligence, and mitigate drug shortages. As the world continues to develop safe and effective treatments for Covid-19, patient safety is paramount. In response to the World Health Organization (WHO) Global Safety Challenge: Medication Without Harm, leaders must establish effective approaches to improve medication safety during the pandemic. Successfully integrating these leadership strategies with current practices allows pharmacy leaders to implement robust systems to reduce errors, prevent harm, and advocate for patient safety.
Collapse
|
23
|
Yao J, Huang M, Shen Q, Ding M, Yu S, Guo Y, Lin Y, Zheng Y, Chen W, Yan W, Liu Z, Wang D, Hu M, Lu L. c-Myc-PD-L1 Axis Sustained Gemcitabine-Resistance in Pancreatic Cancer. Front Pharmacol 2022; 13:851512. [PMID: 35586061 PMCID: PMC9108354 DOI: 10.3389/fphar.2022.851512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer ranks fourth among cancer-related deaths, with a 5-years overall survival rate being below 10%. Gemcitabine (dFdC) has been considered the first-line drug for patients with pancreatic cancer. However, the clinical effectiveness is less than 20% due to drug resistance. Most importantly, overwhelming evidence suggested c-Myc and PD-L1 were generally highly expressed in pancreatic cancer patients. However, whether dFdC-resistant pancreatic cancer is associated with c-Myc and PD-L1 has not been elucidated. In our present study, we found that the expression of c-Myc and PD-L1 was markedly increased in pancreatic tumor tissues compared with adjacent tissues. Similarly, c-Myc and PD-L1 expression were also remarkably elevated in dFdC-resistant Panc-1 cells compared with parental cells. In addition, dFdC sensitivity was enhanced by the combination of dFdC and c-Myc inhibitors in Panc-1 cells. Interestingly, its sensitivity was reduced when c-Myc was overexpressed. Moreover, PD-L1 protein expression was dramatically down-regulated when treated with c-Myc inhibitors. Furthermore, artesunate (ARTS) screened from 18 compounds could reverse dFdC resistance in combination with dFdC in dFdC-resistant Panc-1 cells in vitro and suppressed DMBA-induced pancreatic cancer in vivo. In summary, our data revealed that the mechanism of dFdC resistance may be that c-Myc overexpression contributed to increased PD-L1 expression, and ARTS could overcome dFdC-resistant pancreatic cancer by inhibiting c-Myc and PD-L1. Our findings not only suggest c-Myc and PD-L1 as novel prognostic biomarkers in dFdC-resistant pancreatic cancer, but also provide ARTS as a promising candidate for overcoming dFdC resistance.
Collapse
Affiliation(s)
- Jingjing Yao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinghong Shen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming Ding
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaofang Yu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yajuan Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuefang Lin
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaqiu Zheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbo Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenxin Yan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Linlin Lu, ; Dawei Wang, ; Ming Hu,
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
- *Correspondence: Linlin Lu, ; Dawei Wang, ; Ming Hu,
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- *Correspondence: Linlin Lu, ; Dawei Wang, ; Ming Hu,
| |
Collapse
|
24
|
Watanabe T. Approaches of the Innate Immune System to Ameliorate Adaptive Immunotherapy for B-Cell Non-Hodgkin Lymphoma in Their Microenvironment. Cancers (Basel) 2021; 14:cancers14010141. [PMID: 35008305 PMCID: PMC8750340 DOI: 10.3390/cancers14010141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
A dominant paradigm being developed in immunotherapy for hematologic malignancies is of adaptive immunotherapy that involves chimeric antigen receptor (CAR) T cells and bispecific T-cell engagers. CAR T-cell therapy has yielded results that surpass those of the existing salvage immunochemotherapy for patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) after first-line immunochemotherapy, while offering a therapeutic option for patients with follicular lymphoma (FL) and mantle cell lymphoma (MCL). However, the role of the innate immune system has been shown to prolong CAR T-cell persistence. Cluster of differentiation (CD) 47-blocking antibodies, which are a promising therapeutic armamentarium for DLBCL, are novel innate immune checkpoint inhibitors that allow macrophages to phagocytose tumor cells. Intratumoral Toll-like receptor 9 agonist CpG oligodeoxynucleotide plays a pivotal role in FL, and vaccination may be required in MCL. Additionally, local stimulator of interferon gene agonists, which induce a systemic anti-lymphoma CD8+ T-cell response, and the costimulatory molecule 4-1BB/CD137 or OX40/CD134 agonistic antibodies represent attractive agents for dendritic cell activations, which subsequently, facilitates initiation of productive T-cell priming and NK cells. This review describes the exploitation of approaches that trigger innate immune activation for adaptive immune cells to operate maximally in the tumor microenvironment of these lymphomas.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu City 514-8507, Japan
| |
Collapse
|
25
|
Xiong Y, Huang J. Anti-malarial drug: the emerging role of artemisinin and its derivatives in liver disease treatment. Chin Med 2021; 16:80. [PMID: 34407830 PMCID: PMC8371597 DOI: 10.1186/s13020-021-00489-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Artemisinin and its derivatives belong to a family of drugs approved for the treatment of malaria with known clinical safety and efficacy. In addition to its anti-malarial effect, artemisinin displays anti-viral, anti-inflammatory, and anti-cancer effects in vivo and in vitro. Recently, much attention has been paid to the therapeutic role of artemisinin in liver diseases. Several studies suggest that artemisinin and its derivatives can protect the liver through different mechanisms, such as those pertaining to inflammation, proliferation, invasion, metastasis, and induction of apoptosis and autophagy. In this review, we provide a comprehensive discussion of the underlying molecular mechanisms and signaling pathways of artemisinin and its derivatives in treating liver diseases. Further pharmacological research will aid in determining whether artemisinin and its derivatives may serve as promising medicines for the treatment of liver diseases in the future. ![]()
Collapse
Affiliation(s)
- Ye Xiong
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jianrong Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
26
|
Dihydroartemisinin Attenuates Pulmonary Hypertension Through Inhibition of Pulmonary Vascular Remodeling in Rats. J Cardiovasc Pharmacol 2021; 76:337-348. [PMID: 32569012 DOI: 10.1097/fjc.0000000000000862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a malignant disease characterized by pulmonary arterial remodeling because of the abnormal proliferation and migration of pulmonary arterial smooth muscle cells. Dihydroartemisinin (DHA), an artemisinin derivative used to treat malaria, is able to inhibit fibrosis, neovascularization, and tumor proliferation. In this study, we hypothesized that DHA can be beneficial in treating PAH. To test this hypothesis, a rat model of pulmonary hypertension induced with monocrotaline (MCT) was used. Compared with MCT treatment alone, treatment with 50 or 100 mg/kg DHA significantly reduced the mean pulmonary arterial pressure (30.11 ± 2.48 mm Hg vs. 21.35 ± 3.04 mm Hg and 19.18 ± 1.98 mm Hg, respectively, both P < 0.01), right ventricular transverse diameter (4.36 ± 0.41 mm vs. 3.72 ± 0.24 mm and 3.67 ± 0.27 mm, respectively, both P < 0.01), pulmonary artery medial wall thickness (57.93 ± 11.14% vs. 34.45 ± 4.39% and 25.01 ± 6.66%, respectively, both P < 0.01), and increased tricuspid annular plane systolic excursion (1.34 ± 0.17 mm vs. 1.62 ± 0.3 mm and 1.62 ± 0.16 mm, respectively, both P < 0.05). We also found that DHA inhibited platelet-derived growth factor-BB-mediated pulmonary arterial smooth muscle cells proliferation and migration in a dose-dependent manner. Moreover, DHA downregulated β-catenin levels while upregulating the levels of axis inhibition protein 2 (Axin2) and glycogen synthase kinase 3β (GSK-3β). Our findings suggest that DHA, which may be a potential candidate for PAH therapy, attenuates experimental pulmonary hypertension possibly by inhibiting pulmonary vascular remodeling.
Collapse
|
27
|
Louvel D, De Dios Miguel T, Duc Vu N, Duguet N. The Chemistry of β‐Hydroxy Hydroperoxides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dan Louvel
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| | - Thomas De Dios Miguel
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| | - Nam Duc Vu
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| | - Nicolas Duguet
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| |
Collapse
|
28
|
Orege JI, Adeyemi SB, Tiamiyu BB, Akinyemi TO, Ibrahim YA, Orege OB. Artemisia and Artemisia-based products for COVID-19 management: current state and future perspective. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC8098784 DOI: 10.1007/s13596-021-00576-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joshua Iseoluwa Orege
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Sherif Babatunde Adeyemi
- CG Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli-Mahuva Road, Bardoli, Gujarat State India
- Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| | - Bashir Bolaji Tiamiyu
- Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
- Wuhan Botanical Garden, Chinese Academy of Sciences, Moshan, Wuchang, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Toluwanimi Oluwadara Akinyemi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
- Esep-Le Berger Universite, Cotonou, Republic of Benin
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yusuf Ajibola Ibrahim
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | | |
Collapse
|
29
|
Zheng J, Li X, Yang W, Zhang F. Dihydroartemisinin regulates apoptosis, migration, and invasion of ovarian cancer cells via mediating RECK. J Pharmacol Sci 2021; 146:71-81. [PMID: 33941323 DOI: 10.1016/j.jphs.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dihydroartemisinin (DHA) possesses an inhibitory effect on ovarian cancer and promotes reversion-inducing cysteine-rich protein with Kazal motifs (RECK) expression in glioma cells. This study explored the role of DHA and RECK on ovarian cancer. METHODS The RECK level in ovarian cancer was analyzed under GEPIA 2 database and proved by RT-qPCR. After being treated with DHA or infected with siRECK lentivirus, the viability, apoptosis, migration, and invasion of ovarian cancer cells were evaluated by CCK-8, flow cytometry, wound healing, and transwell assays. Also, the expressions of factors related to apoptosis and epithelial-mesenchymal transition were measured by Western blot or RT-qPCR. RESULTS DHA-treatment weakened the viability, migration, invasion, and enhanced apoptosis of ovarian cancer cells. DHA also down-regulated the levels of Bcl-2, N-cadherin, and Vimentin, and up-regulated the levels of Bax, C-caspase-3 and E-cadherin in ovarian cancer cells. RECK was lowly expressed in both ovarian cancer tissues and cells. siRECK not only had an effect opposite to DHA on the viability, apoptosis, migration, invasion, and related-factors of ovarian cancer cells but also offset the effect of DHA on ovarian cancer cells. CONCLUSION DHA regulated apoptosis, migration, and invasion of ovarian cancer cells via mediating RECK.
Collapse
Affiliation(s)
- Jingfei Zheng
- Department of Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, China.
| | - Xuehe Li
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, China
| | - Weili Yang
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, China
| | - Fang Zhang
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, China
| |
Collapse
|
30
|
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y, Liu W. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy. Curr Med Chem 2021; 28:329-345. [PMID: 31965935 DOI: 10.2174/0929867327666200121124404] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemisinin is a sesquiterpene lactone compound with a special peroxide bridge that is tightly linked to the cytotoxicity involved in fighting malaria and cancer. Artemisinin and its derivatives (ARTs) are considered to be potential anticancer drugs that promote cancer cell apoptosis, induce cell cycle arrest and autophagy, inhibit cancer cell invasion and migration. Additionally, ARTs significantly increase intracellular Reactive Oxygen Species (ROS) in cancer cells, which result in ferroptosis, a new form of cell death, depending on the ferritin concentration. Ferroptosis is regarded as a cancer suppressor and as well as considered a new mechanism for cancer therapy. METHODS The anticancer activities of ARTs and reference molecules were compared by literature search and analysis. The latest research progress on ferroptosis was described, with a special focus on the molecular mechanism of artemisinin-induced ferroptosis. RESULTS Artemisinin derivatives, artemisinin-derived dimers, hybrids and artemisinin-transferrin conjugates, could significantly improve anticancer activity, and their IC50 values are lower than those of reference molecules such as doxorubicin and paclitaxel. The biological activities of linkers in dimers and hybrids are important in the drug design processes. ARTs induce ferroptosis mainly by triggering intracellular ROS production, promoting the lysosomal degradation of ferritin and regulating the System Xc-/Gpx4 axis. Interestingly, ARTs also stimulate the feedback inhibition pathway. CONCLUSION Artemisinin and its derivatives could be used in the future as cancer therapies with broader applications due to their induction of ferroptosis. Meanwhile, more attention should be paid to the development of novel artemisinin-related drugs based on the mechanism of artemisinininduced ferroptosis.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuanpeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yonghao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wanhong Liu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
31
|
Song L, Ge T, Li Z, Sun J, Li G, Sun Y, Fang L, Ma YJ, Garred P. Artesunate: A natural product-based immunomodulator involved in human complement. Biomed Pharmacother 2021; 136:111234. [PMID: 33454596 DOI: 10.1016/j.biopha.2021.111234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
Complement is an important innate immune defence machinery. Once dysregulated, it is often linked to pathogenesis of diverse autoimmune diseases. Artesunate (ART) is a well-known anti-malarial compound. Recently, ART has been highlighted by its potential therapeutic effects on certain complement-related autoimmune diseases. However, the underlying mechanisms are hitherto unknown. In the present study, we found that ART mediated complement interception as validated by analysis of complement haemolytic assay. In cell-based setup using dying Jurkat cells, ART-mediated complement interception was also confirmed. Further, we newly established an ELISA system selectively allowing complement activation via the classical pathway, the lectin pathway and the alternative pathway, respectively. ELISA analysis revealed that ART dose-dependently inhibited C4 activation, C3 activation and terminal complement complex assembly via the effector pathways. ART was found to blockade C1q, C3 and C5 with a lesser extent to properdin. The interaction of ART with C1q was determined to be mediated via C1q globular head region. FACS analysis using ART-conjugated mesoporous silica particles revealed that ART specifically bound the key therapeutic targets of C1q, C3 and C5 on microparticles. In conclusion, we for the first time report the anti-complement bioactivities of ART and suggest a potential therapeutic benefit of ART in the complement-related human diseases.
Collapse
Affiliation(s)
- Lihong Song
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloesvej 26, 2200, Copenhagen N, Denmark; Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Tongqi Ge
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloesvej 26, 2200, Copenhagen N, Denmark; School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Zeqin Li
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jinfeng Sun
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, China
| | - Gao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, China
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Liang Fang
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloesvej 26, 2200, Copenhagen N, Denmark.
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloesvej 26, 2200, Copenhagen N, Denmark
| |
Collapse
|
32
|
Artesunate Switches Monocytes to an Inflammatory Phenotype with the Ability to Kill Leukemic Cells. Int J Mol Sci 2021; 22:ijms22020608. [PMID: 33435371 PMCID: PMC7827848 DOI: 10.3390/ijms22020608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Monocytes are components of the tumor microenvironment related to cancer progression and immune escape. Therapeutic strategies for reprogramming monocytes from a tumor-supporting phenotype towards a tumoricidal phenotype are of great interest. Artesunate (ART) may be an interesting option for cancer treatment; however, the role of ART in regulating the inflammatory tumor microenvironment has not yet been investigated. Our aim is to evaluate the immunomodulatory potential of ART in vitro in human primary monocytes. ART treatment induced an increase in inflammatory monocytes (CD14highCD16−) with HLA-DR high expression and MCP-1/IL-1β release. On the other hand, ART treatment reduced CD206 and CD163 expression, and abolished the monocyte population known as non-classical and intermediate. Leukemia cells in contact with monocytes programmed with ART presented enhanced in vitro apoptosis suggesting that monocytes acquired the ability to kill leukemic cells. ART induced changes in the monocyte phenotype were mediated by JAK2/STAT3 downregulation. The induction of immunosuppressive environment is an important step for cancer progression. ART showed an immunomodulatory activity, leading immune cells to an antitumor phenotype and could be a candidate for immunotherapy in cancer patients.
Collapse
|
33
|
Tilaoui M, Achibat H, Lébri M, Lagou S, Ait Mouse H, Zazouli S, Hafid A, Zyad A, Khouili M. Phytochemical screening, antioxidant and in vitro anticancer activities of Bombax buonopozense stem bark extracts. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mounir Tilaoui
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hanane Achibat
- Laboratory of Organic and Analytical Chemistry, Department of Chemistry, Faculty of Science and Technology of Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Marius Lébri
- Laboratory of Pharmacodynamics and Biochemistry, Department of Biology, Biosciences Research Center, Félix Houphouët-Boigny University, Abidjan, Ivory Coast
| | - Stéphanie Lagou
- Laboratory of Biotechnology, Department of Biology, Nature Biosciences Research Center, Nangui Abrogoua University, Abidjan, Ivory Coast
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Sofia Zazouli
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Abderrafia Hafid
- Laboratory of Organic and Analytical Chemistry, Department of Chemistry, Faculty of Science and Technology of Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Abdelmajid Zyad
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Mostafa Khouili
- Laboratory of Organic and Analytical Chemistry, Department of Chemistry, Faculty of Science and Technology of Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal, Morocco
| |
Collapse
|
34
|
Trendafilova A, Moujir LM, Sousa PMC, Seca AML. Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents. Foods 2020; 10:E65. [PMID: 33396790 PMCID: PMC7823681 DOI: 10.3390/foods10010065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The genus Artemisia, often known collectively as "wormwood", has aroused great interest in the scientific community, pharmaceutical and food industries, generating many studies on the most varied aspects of these plants. In this review, the most recent evidence on health effects of edible Artemisia species and some of its constituents are presented and discussed, based on studies published until 2020, available in the Scopus, Web of Sciences and PubMed databases, related to food applications, nutritional and sesquiterpene lactones composition, and their therapeutic effects supported by in vivo and clinical studies. The analysis of more than 300 selected articles highlights the beneficial effect on health and the high clinical relevance of several Artemisia species besides some sesquiterpene lactones constituents and their derivatives. From an integrated perspective, as it includes therapeutic and nutritional properties, without ignoring some adverse effects described in the literature, this review shows the great potential of Artemisia plants and some of their constituents as dietary supplements, functional foods and as the source of new, more efficient, and safe medicines. Despite all the benefits demonstrated, some gaps need to be filled, mainly related to the use of raw Artemisia extracts, such as its standardization and clinical trials on adverse effects and its health care efficacy.
Collapse
Affiliation(s)
- Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Laila M. Moujir
- Department of Biochemistry, Microbiology, Genetics and Cell Biology, Facultad de Farmacia, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain;
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9500-321 Ponta Delgada, Portugal;
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
35
|
Jiang T, Sun X, Wei L, Li M. Determination of hydrogen peroxide released from cancer cells by a Fe-Organic framework/horseradish peroxidase-modified electrode. Anal Chim Acta 2020; 1135:132-141. [PMID: 33070850 DOI: 10.1016/j.aca.2020.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) were used as conductive carrier on the glassy carbon electrode (GCE), and the hybrid of metal organic framework [NH2-MIL-53(Fe)] and horseradish peroxidase (HRP) was prepared by simple physical mechanical mixture. The GCE modified by the above material with immobilization, namely NH2-MIL-53(Fe)/HRP/MWCNTs/GCE, was used to construct an electrochemical biosensor toward H2O2. The results indicated that the addition of NH2-MIL-53(Fe) had a good synergistic effect on the electron transfer of HRP and the detection of H2O2. Under the optimized condition, the biosensor exhibited excellent electrochemical performances such as low detection limit, high sensitivity, good stability and so on. The H2O2 biosensor showed two linear ranges of 0.1-1 μM and 1-600 μM with a calculated detection limit of 0.028 μM (signal-to-noise ratio, S/N = 3). In addition, the stability of the hybrid of NH2-MIL-53(Fe) and HRP were discussed by SEM, XRD and UV-vis methods. Furthermore, the reported biosensors were practically used in direct detection of H2O2 released from HeLa and HepG2 cells successfully. Thus, this work provides a new strategy to fabricate electrochemical biosensors using MOFs and biomolecules.
Collapse
Affiliation(s)
- Tian Jiang
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xiuxiu Sun
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Lingli Wei
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Maoguo Li
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
36
|
Arnesen JA, Kildegaard KR, Cernuda Pastor M, Jayachandran S, Kristensen M, Borodina I. Yarrowia lipolytica Strains Engineered for the Production of Terpenoids. Front Bioeng Biotechnol 2020; 8:945. [PMID: 32923433 PMCID: PMC7456906 DOI: 10.3389/fbioe.2020.00945] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Terpenoids are a diverse group of over 55,000 compounds with potential applications as advanced fuels, bulk and fine chemicals, pharmaceutical ingredients, agricultural chemicals, etc. To facilitate their bio-based production, there is a need for plug-and-play hosts, capable of high-level production of different terpenoids. Here we engineer Yarrowia lipolytica platform strains for the overproduction of mono-, sesqui-, di-, tri-, and tetraterpenoids. The monoterpene platform strain was evaluated by expressing Perilla frutescens limonene synthase, which resulted in limonene titer of 35.9 mg/L and was 100-fold higher than when the same enzyme was expressed in the strain without mevalonate pathway improvement. Expression of Callitropsis nootkatensis valencene synthase in the sesquiterpene platform strain resulted in 113.9 mg/L valencene, an 8.4-fold increase over the control strain. Platform strains for production of squalene, complex triterpenes, or diterpenes and carotenoids were also constructed and resulted in the production of 402.4 mg/L squalene, 22 mg/L 2,3-oxidosqualene, or 164 mg/L β-carotene, respectively. The presented terpenoid platform strains can facilitate the evaluation of terpenoid biosynthetic pathways and are a convenient starting point for constructing efficient cell factories for the production of various terpenoids. The platform strains and exemplary terpenoid strains can be obtained from Euroscarf.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Marc Cernuda Pastor
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sidharth Jayachandran
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
37
|
Fan Z, Jiang B, Zhu Q, Xiang S, Tu L, Yang Y, Zhao Q, Huang D, Han J, Su G, Ge D, Hou Z. Tumor-Specific Endogenous Fe II-Activated, MRI-Guided Self-Targeting Gadolinium-Coordinated Theranostic Nanoplatforms for Amplification of ROS and Enhanced Chemodynamic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14884-14904. [PMID: 32167740 DOI: 10.1021/acsami.0c00970] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low drug payload and lack of tumor-targeting for chemodynamic therapy (CDT) result in an insufficient reactive oxygen species (ROS) generation, which seriously hinders its further clinical application. Therefore, how to improve the drug payload and tumor targeting for amplification of ROS and combine it with chemotherapy has been a huge challenge in CDT. Herein, methotrexate (MTX), gadolinium (Gd), and artesunate (ASA) were used as theranostic building blocks to be coordinately assembled into tumor-specific endogenous FeII-activated and magnetic resonance imaging (MRI)-guided self-targeting carrier-free nanoplatforms (NPs) for amplification of ROS and enhanced chemodynamic chemotherapy. The obtained ASA-MTX-GdIII NPs exhibited extremely high drug payload (∼96 wt %), excellent physiological stability, long circulating ability (half-time: ∼12 h), and outstanding tumor accumulation. Moreover, ASA-MTX-GdIII NPs could be specifically uptaken by tumor cells via folate (FA) receptors and subsequently be disassembled via lysosomal acidity-induced coordination breakage, resulting in drug burst release. Most strikingly, the produced ASA could be catalyzed by tumor-specific overexpressed endogenous FeII ions to generate sufficient ROS for enhancing the main chemodynamic efficacy, which could exert a synergistic effect with the assistant chemotherapy of MTX. Interestingly, ASA-MTX-GdIII NPs caused a lower ROS generation and toxicity on normal cell lines that seldom expressed endogenous FeII ions. Under MRI guidance with assistance of self-targeting, significantly superior synergistic tumor therapy was performed on FA receptor-overexpressed tumor-bearing mice with a higher ROS generation and an almost complete elimination of tumor. This work highlights ASA-MTX-GdIII NPs as an efficient chemodynamic-chemotherapeutic agent for MRI imaging and tumor theranostics.
Collapse
Affiliation(s)
- Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Beili Jiang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Qixin Zhu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361005, China
| | - Sijin Xiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Li Tu
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Yifan Yang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Qingliang Zhao
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Doudou Huang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Jian Han
- School of Electronic Science and Engineering, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Guanghao Su
- Children's Hospital, Soochow University, Suzhou 215025, China
| | - Dongtao Ge
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| |
Collapse
|
38
|
Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr Res Rev 2020; 33:218-234. [PMID: 32100670 DOI: 10.1017/s0954422420000013] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the current post-antibiotic era, botanicals represent one of the most employed nutritional strategies to sustain antibiotic-free and no-antibiotic-ever production. Botanicals can be classified either as plant extracts, meaning the direct products derived by extraction from the raw plant materials (essential oils (EO) and oleoresins (OR)), or as nature-identical compounds (NIC), such as the chemically synthesised counterparts of the pure bioactive compounds of EO/OR. In the literature, differences between the use of EO/OR or NIC are often unclear, so it is difficult to attribute certain effects to specific bioactive compounds. The aim of the present review was to provide an overview of the effects exerted by botanicals on the health status and growth performance of poultry and pigs, focusing attention on those studies where only NIC were employed or those where the composition of the EO/OR was defined. In particular, phenolic compounds (apigenin, quercetin, curcumin and resveratrol), organosulfur compounds (allicin), terpenes (eugenol, thymol, carvacrol, capsaicin and artemisinin) and aldehydes (cinnamaldehyde and vanillin) were considered. These molecules have different properties such as antimicrobial (including antibacterial, antifungal, antiviral and antiprotozoal), anti-inflammatory, antioxidant, immunomodulatory, as well as the improvement of intestinal morphology and integrity of the intestinal mucosa. The use of NIC allows us to properly combine pure compounds, according to the target to achieve. Thus, they represent a promising non-antibiotic tool to allow better intestinal health and a general health status, thereby leading to improved growth performance.
Collapse
|
39
|
Wu P, Ding B, Ye L, Huang Y, Ji J, Fan Y, Xu L. Zhibaidihuang Decoction Ameliorates Cell Oxidative Stress by Regulating the Keap1-Nrf2-ARE Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:9294605. [PMID: 32104200 PMCID: PMC7037871 DOI: 10.1155/2020/9294605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023]
Abstract
Zhibaidihuang decoction (ZBDHD) is a Chinese herbal formula, which is used in Chinese traditional medicine to treat symptoms of Yinxuhuowang (Yin deficiency and high fire) syndrome. This study elucidates the mechanism of ZBDHD on oral ulcers, one Yinxuhuowang syndrome. Simultaneously, some ingredients in ZBDHD were found and identified by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A Ganjiangfuzirougui decoction- (GJD-) induced Yinxuhuowang syndrome SD rat model was used to demonstrate the efficiency of ZBDHD treatment. The oral mucosa of rat in the GJD group, stained with hematoxylin and eosin (H&E), showed epidermal shedding and inflammatory cell infiltration. And an alleviation efficiency of ZBDHD in GJD-induced pathological changes in the oral mucosa could be obtained. ZBDHD treatment restored the GJD-induced imbalance of metabolites, which were choline, glycocholic acid, and palmitoyl-L-carnitine (PALC). GJD stimulated the expression of NF-κB. And the overexpressed of NF-κB in mucosa of rat in the GJD group could be inhibited by ZBDHD treatment. Simultaneously, the optimal efficiency of ZBDHD treatment on the cellular ATP content, oxygen consumption rate (OCR), and superoxide dismutase (SOD) concentration was evaluated, in vitro assay. Compared to the control cells, the ATP content, OCR, and SOD activity in the ZBDHD-treated cells were significantly higher. For the mechanisms study, seven cytokines were screened with a Dual-Luciferase Reporter gene assay. In the ARE assay, the luciferase signal was stimulated significantly by ZBDHD. In cells, the transcription of nrf2, maf, and keap1, which were related to the ARE pathway, was elevated by ZBDHD treatment. Our study demonstrated that high-dose GJD could lead to Yinxuhuowang syndrome, such as oral ulcers, and the imbalance in serum metabolites. And ZBDHD can improve oral cell inflammation and the imbalance of metabolism by inhibiting NF-κB and enhancing the activity of the ARE signalling pathway to ameliorate oxidative stress in the cell. This study provides a theoretical basis for the clinical application of ZBDHD.
Collapse
Affiliation(s)
- Pingping Wu
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bin Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Ye
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanfen Huang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jinjun Ji
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yongsheng Fan
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Xu
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Zhang Z, Liu W, Ma Z, Zhu W, Jia L. Transcriptional characterization and response to defense elicitors of mevalonate pathway genes in cotton ( Gossypium arboreum L.). PeerJ 2019; 7:e8123. [PMID: 31768304 PMCID: PMC6874856 DOI: 10.7717/peerj.8123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 01/21/2023] Open
Abstract
The mevalonate (MVA) pathway is responsible for the biosynthesis of cytosolic terpenes including gossypol and its derivatives, which play an important role in the cotton plant’s defense against pathogens and herbivores. In this study, we identified and cloned 17 potentially functional genes encoding enzymes that catalyze the six steps of the MVA pathway in Gossypium arboreum. Expression pattern analysis by qRT-PCR demonstrated that these genes had tissue-specific expression profiles and were most prevalently expressed in roots. Moreover, these genes were up-regulated in response to several elicitors, including methyl jasmonate and salicylic acid, as well as Verticillium dahliae infection and Helicoverpa armigera infestation. This indicates that the MVA pathway genes are involved in the signaling pathway regulated by exogenous hormones and the resistance of cotton plants to pathogens and herbivores. Our results improve the understanding of cytosolic terpene biosynthesis in Gossypium species and lay the foundation for further research on gossypol biosynthesis.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Zongbin Ma
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Wei Zhu
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lin Jia
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
41
|
Huang ZZ, Xu Y, Xu M, Shi ZR, Mai SZ, Guo ZX, Tang ZQ, Luo YJ, Guo Q, Xiong H. Artesunate alleviates imiquimod-induced psoriasis-like dermatitis in BALB/c mice. Int Immunopharmacol 2019; 75:105817. [DOI: 10.1016/j.intimp.2019.105817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
|
42
|
Aktaş İ, Özmen Ö, Tutun H, Yalçın A, Türk A. Artemisinin attenuates doxorubicin induced cardiotoxicity and hepatotoxicity in rats. Biotech Histochem 2019; 95:121-128. [DOI: 10.1080/10520295.2019.1647457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- İ. Aktaş
- Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey
| | - Ö. Özmen
- Faculty of Veterinary Medicine, Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - H. Tutun
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - A. Yalçın
- Faculty of Medicine, Departments of Histology, Adıyaman University, Adıyaman, Turkey
| | - A. Türk
- Faculty of Medicine, Departments of Histology, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
43
|
Luo Y, Sun X, Huang L, Yan J, Yu BY, Tian J. Artemisinin-Based Smart Nanomedicines with Self-Supply of Ferrous Ion to Enhance Oxidative Stress for Specific and Efficient Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29490-29497. [PMID: 31355624 DOI: 10.1021/acsami.9b07390] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Though abundant researches report that artemisinin could inhibit cancer cell growth via generating toxic reactive oxygen species (ROS), the therapeutic efficiency of artemisinin for cancer treatment is still limited owing to the insufficient intracellular ferrous ion and defensive effect of intracellular glutathione. Herein, we report a cathepsin B-controllable smart nanomedicine based on the structural and pharmacodynamic characteristics of artemisinin, which employed transferrin-peptide-modified mesoporous silica to codeliver artemisinin and buthionine-sulfoximine, a glutathione scavenger, into cancer cells. As a gatekeeper, the transferrin-peptide can not only target the cancer cells but also supply the extra ferrous iron to catalyze artemisinin to produce excessive ROS to kill cancer cells efficiently. Once the designed nanomedicine attack into lysosome of tumor cells, the cargos of nanomedicine can be released in the presence of cathepsin B to immediately activate self-amplification of oxidative stress by simultaneously elevating the levels of ROS and weakening the levels of glutathione. We anticipate that this rational design strategy provides innovative opportunities for artemisinin in the clinical application of cancer.
Collapse
Affiliation(s)
- Yingping Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Xian Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Liwei Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Jin Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| |
Collapse
|
44
|
Investigation of the Effects of Artemisinin on Testis and Kidney Injury Induced by Doxorubicin. ACTA VET-BEOGRAD 2019. [DOI: 10.2478/acve-2019-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Artemisinin, an antimalarial drug, has anticancer activity and possesses protective effects against several tissue injuries. The aim of the present study was to investigate the effects of artemisinin on doxorubicin-induced renal and testicular toxicity in rats. Doxorubicin was administered to rats at a single dose of 10 mg/kg body weight (b.w.) as a single intraperitoneal injection. Application of artemisinin was by using oral gavage feeding needle for 14 days at different specified doses (7 mg/kg and 35 mg/kg b.w.). At the end of the experiments, kidney and testis samples were collected and used for histopathological and immunohistochemical examinations. At histopathological examination, while hyperemia was the marked finding in kidney and testis of rats treated with doxorubicin only, no evidence of structural abnormalities showed in other groups. Immunohistochemical examination of the testes and kidneys demonstrated significantly increased expression of caspase-3, TNF-α, iNOS and NF-κB in rats treated with doxorubicin only. Artemisinin decreased the doxorubicin-induced overexpression of NF-κB, iNOS, TNFα and caspase-3 in these tissues of rats. Artemisinin can protect the kidney and testis against doxorubicin-induced nephrotoxicity and testotoxicity, probably through a decrease of caspase-3, TNF-α, iNOS and NF-κB expressions. It may be concluded that artemisinin has a potential for clinical use in the treatment of kidney and testis damage induced by doxorubicin. Further researches are required to determine the appropriate combination of artemisinin with doxorubicin.
Collapse
|
45
|
Liu X, Cao J, Huang G, Zhao Q, Shen J. Biological Activities of Artemisinin Derivatives Beyond Malaria. Curr Top Med Chem 2019; 19:205-222. [DOI: 10.2174/1568026619666190122144217] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
Artemisinin is isolated from Artemisia annua L. with peroxide-containing sesquiterpene lactone structure. Because of its unique structural characteristics and promising anticancer, antivirus activities, it has recently received increasing attention. The aim of this review is to summarize recent discoveries of artemisinin's novel derivatives with new pharmaceutical effects beyond malaria with a focus on its antitumor and antivirus activity, as well as potential results of combination therapy with other clinical drugs.
Collapse
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianguo Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Guozheng Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Qingjie Zhao
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
46
|
Kumar MS, Yadav TT, Khair RR, Peters GJ, Yergeri MC. Combination Therapies of Artemisinin and its Derivatives as a Viable Approach for Future Cancer Treatment. Curr Pharm Des 2019; 25:3323-3338. [PMID: 31475891 DOI: 10.2174/1381612825666190902155957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many anticancer drugs have been developed for clinical usage till now, but the major problem is the development of drug-resistance over a period of time in the treatment of cancer. Anticancer drugs produce huge adverse effects, ultimately leading to death of the patient. Researchers have been focusing on the development of novel molecules with higher efficacy and lower toxicity; the anti-malarial drug artemisinin and its derivatives have exhibited cytotoxic effects. METHODS We have done extensive literature search for artemisinin for its new role as anti-cancer agent for future treatment. Last two decades papers were referred for deep understanding to strengthen its role. RESULT Literature shows changes at 9, 10 position in the artemisinin structure produces anticancer activity. Artemisinin shows anticancer activity in leukemia, hepatocellular carcinoma, colorectal and breast cancer cell lines. Artemisinin and its derivatives have been studied as combination therapy with several synthetic compounds, RNA interfaces, recombinant proteins and antibodies etc., for synergizing the effect of these drugs. They produce an anticancer effect by causing cell cycle arrest, regulating signaling in apoptosis, angiogenesis and cytotoxicity activity on the steroid receptors. Many novel formulations of artemisinin are being developed in the form of carbon nanotubes, polymer-coated drug particles, etc., for delivering artemisinin, since it has poor water/ oil solubility and is chemically unstable. CONCLUSION We have summarize the combination therapies of artemisinin and its derivatives with other anticancer drugs and also focussed on recent developments of different drug delivery systems in the last 10 years. Various reports and clinical trials of artemisinin type drugs indicated selective cytotoxicity along with minimal toxicity thus projecting them as promising anti-cancer agents in future cancer therapies.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Tanuja T Yadav
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Rohan R Khair
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Mayur C Yergeri
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| |
Collapse
|
47
|
Wu G, Cheng B, Qian H, Ma S, Chen Q. Identification of HSP90 as a direct target of artemisinin for its anti-inflammatory activity via quantitative chemical proteomics. Org Biomol Chem 2019; 17:6854-6859. [DOI: 10.1039/c9ob01264h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global profiling of the target proteins of ART for its anti-inflammatory activity via ABPP combined with quantitative chemical proteomics.
Collapse
Affiliation(s)
- Guolin Wu
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Bao Cheng
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Qin Chen
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
48
|
Wang C, Liwei M, Park JB, Jeong SH, Wei G, Wang Y, Kim SW. Microbial Platform for Terpenoid Production: Escherichia coli and Yeast. Front Microbiol 2018; 9:2460. [PMID: 30369922 PMCID: PMC6194902 DOI: 10.3389/fmicb.2018.02460] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
Terpenoids, also called isoprenoids, are a large and highly diverse family of natural products with important medical and industrial properties. However, a limited production of terpenoids from natural resources constrains their use of either bulk commodity products or high valuable products. Microbial production of terpenoids from Escherichia coli and yeasts provides a promising alternative owing to available genetic tools in pathway engineering and genome editing, and a comprehensive understanding of their metabolisms. This review summarizes recent progresses in engineering of industrial model strains, E. coli and yeasts, for terpenoids production. With advances of synthetic biology and systems biology, both strains are expected to present the great potential as a platform of terpenoid synthesis.
Collapse
Affiliation(s)
- Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Mudanguli Liwei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ji-Bin Park
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Seong-Hee Jeong
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yujun Wang
- Department of Marine Science, Qinzhou University, Qinzhou, China
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|