1
|
Naderian M, Hafez Ghoran S, Abdjan MI, Sabahi Z, Moein S, Jassbi AR, Moein M. A new labdane diterpenoid, in vitro and in silico cytotoxicity, and protease inhibitory effects of phytochemicals from Juniperus polycarposK. Koch leaves. Nat Prod Res 2025; 39:3053-3064. [PMID: 38501578 DOI: 10.1080/14786419.2024.2323542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Cytotoxicity-guided purification of Juniperus polycarpos K. Koch leaves (Cupressaceae) led to the isolation of a new labdane diterpenoid, 3-(acetyloxy)-acetylisocupressic acid (1), together with isocupressic acid (2), 3,4-dimethoxycinnamoyl alcohol (3) and deoxypodophyllotoxin (4). The chemical structures of 1-4 were established by detailed 1D and 2D NMR, HRFAB-MS and LRESI-MS, as well as by comparing the spectral data with those reported in the literature. Compound 1 was ineffective against HepG2 cells and protease enzyme, while 2 showed potent cytotoxicity against HepG2 cells (IC50 of 3.73 μg/mL) compared to cisplatin (IC50 of 12.65 μg/mL). Computational analyses with CDK1 protein (a prominent protein in the cell cycle of HepG2 cells) revealed the binding affinity of 2 (-31.86 kcal/mol) was better than 1 (-19.70 kcal/mol) because the acetoxy groups did not allow binding deeply to the ATP binding site. Compounds 2 and 4 moderately inhibited the protease activity (IC50 = 52.7 and 63.0 μg/mL, respectively). Further in vitro and in vivo studies on the plant are strongly recommended.
Collapse
Affiliation(s)
- Moslem Naderian
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salar Hafez Ghoran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Muhammad Ikhlas Abdjan
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Zahra Sabahi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoodreza Moein
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
de Lima CA, Maquedano LK, Jaalouk LS, dos Santos DC, Longato GB. Biflavonoids: Preliminary Reports on Their Role in Prostate and Breast Cancer Therapy. Pharmaceuticals (Basel) 2024; 17:874. [PMID: 39065725 PMCID: PMC11279920 DOI: 10.3390/ph17070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Dimeric flavonoids, also called biflavonoids, are bioactive compounds that exhibit various activities described in the literature, including antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antioxidant, vasorelaxant, and anticancer properties. This work focuses on the anticancer action of naturally occurring dimeric flavonoids against prostate and breast cancer, as well as on the mechanisms of action involved in their activity and presents the most current information on this subject in the literature. In the present review, we summarize the latest findings on the antiproliferative activity of 33 dimeric flavonoid-based compounds selected from recently published studies. The tests conducted were in silico and in vitro and demonstrated the cytotoxic activity potential of biflavonoids against prostate and breast tumor cells. Biflavonoids were capable of interfering with the migration and replication of cancer cells and their mechanism of action is related to cell death pathways, especially apoptosis, necrosis, and ferroptosis. These compounds decreased mitochondrial membrane potential and significantly increased intracellular levels of reactive oxygen species (ROS). Additionally, they significantly upregulated the expression of p21, Bax, and cleaved caspase-3, while downregulating Bcl-2 and caspase-3 levels, indicating their cell death mechanism of action is through the Bcl-2/Bax/cleaved caspase-3 pathway and cell cycle arrest. The biflavonoids here related have shown promising anticancer activity and are considered potential drug candidates for prostate and breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Barbarini Longato
- Laboratory of Molecular Pharmacology and Bioactive Compounds, São Francisco University, 218 São Francisco Avenue, Bragança Paulista 12916-900, SP, Brazil; (C.A.d.L.); (L.K.M.); (L.S.J.); (D.C.d.S.)
| |
Collapse
|
3
|
Fikry E, Orfali R, El-Sayed SS, Perveen S, Ghafar S, El-Shafae AM, El-Domiaty MM, Tawfeek N. Potential Hepatoprotective Effects of Chamaecyparis lawsoniana against Methotrexate-Induced Liver Injury: Integrated Phytochemical Profiling, Target Network Analysis, and Experimental Validation. Antioxidants (Basel) 2023; 12:2118. [PMID: 38136237 PMCID: PMC10740566 DOI: 10.3390/antiox12122118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Methotrexate (MTX) therapy encounters significant limitations due to the significant concern of drug-induced liver injury (DILI), which poses a significant challenge to its usage. To mitigate the deleterious effects of MTX on hepatic function, researchers have explored plant sources to discover potential hepatoprotective agents. This study investigated the hepatoprotective effects of the ethanolic extract derived from the aerial parts of Chamaecyparis lawsoniana (CLAE) against DILI, specifically focusing on MTX-induced hepatotoxicity. UPLC-ESI-MS/MS was used to identify 61 compounds in CLAE, with 31 potential bioactive compounds determined through pharmacokinetic analysis. Network pharmacology analysis revealed 195 potential DILI targets for the bioactive compounds, including TP53, IL6, TNF, HSP90AA1, EGFR, IL1B, BCL2, and CASP3 as top targets. In vivo experiments conducted on rats with acute MTX-hepatotoxicity revealed that administering CLAE orally at 200 and 400 mg/kg/day for ten days dose-dependently improved liver function, attenuated hepatic oxidative stress, inflammation, and apoptosis, and reversed the disarrayed hepatic histological features induced by MTX. In general, the findings of the present study provide evidence in favor of the hepatoprotective capabilities of CLAE in DILI, thereby justifying the need for additional preclinical and clinical investigations.
Collapse
Affiliation(s)
- Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaimaa S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA;
| | - Safina Ghafar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| | - Maher M. El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (E.F.); (A.M.E.-S.); (N.T.)
| |
Collapse
|
4
|
Wu HC, Shiu LL, Wang SW, Huang CY, Lee TH, Sung PJ, Kuo YH. Anti-Lymphangiogenic Terpenoids from the Heartwood of Taiwan Juniper, Juniperus chinensis var. tsukusiensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3828. [PMID: 38005725 PMCID: PMC10674874 DOI: 10.3390/plants12223828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
To look in-depth into the phytochemical and pharmacological properties of Taiwan juniper, this study investigated the chemical profiles and anti-lymphangiogenic activity of Juniperus chinensis var. tsukusiensis. In this study, four new sesquiterpenes, 12-acetoxywiddrol (1), cedrol-13-al (2), α-corocalen-15-oic acid (3), 1,3,5-bisaoltrien-10-hydroperoxy-11-ol (4), one new diterpene, 1β,2β-epoxy-9α-hydroxy-8(14),11-totaradiene-3,13-dione (5), and thirty-three known terpenoids were successfully isolated from the heartwood of J. chinensis var. tsukusiensis. The structures of all isolates were determined through the analysis of physical data (including appearance, UV, IR, and optical rotation) and spectroscopic data (including 1D, 2D NMR, and HRESIMS). Thirty-four compounds were evaluated for their anti-lymphangiogenic effects in human lymphatic endothelial cells (LECs). Among them, totarolone (6) displayed the most potent anti-lymphangiogenic activity by suppressing cell growth (IC50 = 6 ± 1 µM) of LECs. Moreover, 3β-hydroxytotarol (7), 7-oxototarol (8), and 1-oxo-3β-hydroxytotarol (9) showed moderate growth-inhibitory effects on LECs with IC50 values of 29 ± 1, 28 ± 1, and 45 ± 2 µM, respectively. Totarolone (6) also induced a significant concentration-dependent inhibition of LEC tube formation (IC50 = 9.3 ± 2.5 µM) without cytotoxicity. The structure-activity relationship discussion of aromatic totarane-type diterpenes against lymphangiogenesis of LECs is also included in this study. Altogether, our findings unveiled the promising potential of J. chinensis var. tsukusiensis in developing therapeutics targeting tumor lymphangiogenesis.
Collapse
Affiliation(s)
- Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan;
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Lung-Lin Shiu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan;
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan; (S.-W.W.); (C.-Y.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Ying Huang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan; (S.-W.W.); (C.-Y.H.)
- Department of Chinese Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan;
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
5
|
Liang KY, Li H, Zhou PJ, Zhao ZY, Zang Y, Xiong J, Li J, Hu JF. Squamabietenols A-F, undescribed abietane-O-abietane dimeric diterpenoids from the ornamental conifer Juniperus squamata and their ATP-citrate lyase inhibitory activities. PHYTOCHEMISTRY 2023; 210:113663. [PMID: 36990194 DOI: 10.1016/j.phytochem.2023.113663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Six undescribed naturally occurring abietane-O-abietane dimers (squamabietenols A-F) together with one 3,4-seco-totarane-type, a pimarane-type, and 17 related known mono-/dimeric diterpenoids were isolated and characterized from the needles and twigs of the ornamental conifer Juniperus squamata. The undescribed structures and their absolute configurations were established by extensive spectroscopic methods, GIAO NMR calculations with DP4+ probability analyses, and ECD calculations. Squamabietenols A and B showed significant inhibitory effects against ATP-citrate lyase (ACL, a novel drug target for hyperlipidemia and other metabolic disorders), with IC50 values of 8.82 and 4.49 μM, respectively. A molecular docking study corroborated the findings by highlighting the interactions between the bioactive compounds and the ACL enzyme (binding affinities: -7.1 to -9.0 kcal/mol). The unique abietane-O-abietane dimeric diterpenoids are quite rare in the vegetable kingdom, and they are of chemotaxonomic significance for the Cupressaceae family.
Collapse
Affiliation(s)
- Kai-Yuan Liang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China
| | - Hao Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Peng-Jun Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China
| | - Ze-Yu Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Jin-Feng Hu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China.
| |
Collapse
|
6
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
7
|
Goossens JF, Goossens L, Bailly C. Hinokiflavone and Related C-O-C-Type Biflavonoids as Anti-cancer Compounds: Properties and Mechanism of Action. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:365-377. [PMID: 33534099 PMCID: PMC7856339 DOI: 10.1007/s13659-021-00298-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Biflavonoids are divided in two classes: C-C type compounds represented by the dimeric compound amentoflavone and C-O-C-type compounds typified by hinokiflavone (HNK) with an ether linkage between the two connected apigenin units. This later sub-group of bisflavonyl ethers includes HNK, ochnaflavone, delicaflavone and a few other dimeric compounds, found in a variety of plants, notably Selaginella species. A comprehensive review of the anticancer properties and mechanism of action of HNK is provided, to highlight the anti-proliferative and anti-metastatic activities of HNK and derivatives, and HNK-containing plant extracts. The anticancer effects rely on the capacity of HNK to interfere with the ERK1-2/p38/NFκB signaling pathway and the regulation of the expression of the matrix metalloproteinases MMP-2 and MMP-9 (with a potential direct binding to MMP-9). In addition, HNK was found to function as a potent modulator of pre-mRNA splicing, inhibiting the SUMO-specific protease SENP1. As such, HNK represents a rare SENP1 inhibitor of natural origin and a scaffold to design synthetic compounds. Oral formulations of HNK have been elaborated to enhance its solubility, to facilitate the compound delivery and to enhance its anticancer efficacy. The review shed light on the anticancer potential of C-O-C-type biflavonoids and specifically on the pharmacological profile of HNK. This compound deserves further attention as a regulator of pre-mRNA splicing, useful to treat cancers (in particular hepatocellular carcinoma) and other human pathologies.
Collapse
Affiliation(s)
- Jean-François Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | - Laurence Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | | |
Collapse
|
8
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
9
|
Hartini Y, Saputra B, Wahono B, Auw Z, Indayani F, Adelya L, Namba G, Hariono M. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus. RESULTS IN CHEMISTRY 2021; 3:100087. [PMID: 33520632 PMCID: PMC7832947 DOI: 10.1016/j.rechem.2020.100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
3CL protease is one of the key proteins expressed by SARS-Coronavirus-2 cell, the potential to be targeted in the discovery of antivirus during this COVID-19 pandemic. This protein regulates the proteolysis of viral polypeptide essential in forming RNA virus. 3CL protease (3CLpro) was commonly targeted in the previous SARS-Coronavirus including bat and MERS, hence, by blocking this protein activity, the coronavirus should be eradicated. This study aims to review the potency of biflavonoid as the SARS-Coronavirus-2 3CLpro inhibitor. The review was initiated by describing the chemical structure of biflavonoid and followed by listing its natural source. Instead, the synthetic pathway of biflavonoid was also elaborated. The 3CLpro structure and its function were also illustrated followed by the list of its 3D-crystal structure available in a protein data bank. Lastly, the pharmacophores of biflavonoid have been identified as a protease inhibitor, was also discussed. This review hopefully will help researchers to obtain packed information about biflavonoid which could lead to the study in designing and discovering a novel SARS-Coronavirus-2 drug by targetting the 3CLpro enzyme.
Collapse
Affiliation(s)
- Yustina Hartini
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Bakti Saputra
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Bryan Wahono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Zerlinda Auw
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Friska Indayani
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Lintang Adelya
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Gabriel Namba
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Maywan Hariono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| |
Collapse
|