1
|
Wang S, Liu C, Ye D, Qi J, Xing Y, Wang J, Fan X, Li X, Chen H, Liu H, Li S, Yu S, Liu Y. Deciphering the mechanism of baicalein in cervical cancer via bioinformatics, machine learning and computational simulations: PIM1 and CDK2 are key target proteins. Int J Biol Macromol 2025; 311:144014. [PMID: 40339869 DOI: 10.1016/j.ijbiomac.2025.144014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Cervical cancer is one of the leading causes of death among women worldwide. Current treatments are limited by chemoresistance and chemotherapeutic agents' adverse effects, prompting the search for better therapeutic alternatives. Baicalein, a natural compound with potent antitumor activity and low toxicity, has drawn significant attention. However, the precise mechanisms of baicalein against cervical cancer remain to be fully elucidated. In this study, bioinformatics and machine learning algorithms predicted six potential core targets of baicalein against cervical cancer. Molecular docking and molecular dynamics simulations were employed to further validate these targets, with a focus on assessing their binding affinity and stability. The molecular docking results demonstrated that five of the core targets exhibited significant binding affinity with baicalein. Notably, PIM1 and CDK2 showed stable binding conformations in molecular dynamics simulations. GO and KEGG enrichment analyses indicated baicalein might regulate cell cycle progression via histone kinase - mediated phosphorylation modifications. Thus, baicalein likely suppresses cervical cancer cells' abnormal proliferation by inhibiting PIM1 and CDK2 activity, inducing cell cycle arrest.
Collapse
Affiliation(s)
- Shuyue Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Danyang Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinchai Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yantao Xing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaojing Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Heng Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shaojun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Li J, Zhang D, Wang S, Yu P, Sun J, Zhang Y, Meng X, Li J, Xiang L. Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer. J Adv Res 2025; 68:341-357. [PMID: 38432394 PMCID: PMC11785570 DOI: 10.1016/j.jare.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Baicalein, a bioactive component of Scutellaria baicalensis Georgi, has been shown to promote apoptosis in non-small cell lung cancer cells. However, previous studies have not determined if baicalein exerts proapoptotic effects by modulating the metabolic pathways. OBJECTIVE To investigate if baicalein induces apoptosis in lung cancer cells by modulating the glutamine-mTOR metabolic pathway. METHODS The in vivo anti-lung cancer activity of baicalein (50, 100, and 200 mg/kg) was evaluated using a xenograft model. In vitro experiments were used to assess the efficacy of baicalein (for H1299: 12.5, 25, and 50 μM; for A549: 10, 20, and 40 μM) on lung cancer cell proliferation, colony formation, and apoptosis. Metabolomics analysis was performed using liquid chromatography-mass spectrometry. The binding of baicalein to glutamine transporters and glutaminase was examined using molecular docking. The overexpression of glutamine transporters was validated using qRT-PCR and western blot analyses. The levels of ASCT2, LAT1, GLS1, p-mTOR, mTOR, and apoptosis-related proteins were evaluated using western blot analysis. RESULTS Baicalein inhibited lung cancer xenograft tumor growth in vivo and suppressed proliferation and promoted apoptosis in lung cancer cells in vitro. Additionally, baicalein altered amino acid metabolites, especially glutamine metabolites, in H1299 and A549 cells. Mechanistically, baicalein interacted with glutamine transporters as well as glutaminase and inhibited their activation. The expression of mTOR, an apoptosis-related protein and downstream target of glutamine metabolism, was also inhibited by baicalein treatment. Importantly, we next demonstrated the suppression of mTOR signaling and the induction of apoptosis by baicalein were achieved by regulating glutamine metabolism. CONCLUSION Baicalein inhibited the mTOR signaling pathway and induced apoptosis by downregulating glutamine metabolism. The potential of baicalein to induce apoptosis in lung cancer cells by selectively targeting the glutamine-mTOR pathway suggests an encouraging approach for treating lung cancer.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Di Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Juan Li
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Lei C, Yu Y, Zhu Y, Li Y, Ma C, Ding L, Han L, Zhang H. The most recent progress of baicalein in its anti-neoplastic effects and mechanisms. Biomed Pharmacother 2024; 176:116862. [PMID: 38850656 DOI: 10.1016/j.biopha.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Problems, such as toxic side effects and drug resistance of chemoradiotherapy, target therapy and immunotherapy accompanying the current anti-cancer treatments, have become bottlenecks limiting the clinical benefit for patients. Therefore, it is urgent to find promising anti-cancer strategies with higher efficacy and lesser side effects. Baicalein, a flavonoid component derived from the Chinese medicine scutellaria baicalensis, has been widely studied for its remarkable anti-cancer activity in multiple types of malignancies both at the molecular and cellular levels. Baicalein exerts its anti-tumor effects by inhibiting angiogenesis, invasion and migration, inducing cell apoptosis and cell cycle arrest, as well as regulating cell autophagy, metabolism, the tumor microenvironment and cancer stem cells with no obvious toxic side effects. The role of classic signaling pathways, such as PI3K/AKT/mTOR, MAPK, AMPK, Wnt/β-catenin, JAK/STAT3, MMP-2/-9, have been highlighted as the major targets for baicalein exerting its anti-malignant potential. Besides, baicalein can regulate the relevant non-coding RNAs, such as lncRNAs, miRNAs and circ-RNAs, to inhibit tumorigenesis and progression. In addition to the mentioned commonalities, baicalein shows some specific anti-tumor characteristics in some specific cancer types. Moreover, the preclinical studies of the combination of baicalein and chemoradiotherapy pave the way ahead for developing baicalein as an adjunct treatment with chemoradiotherapy. Our aim is to summary the role of baicalein in different types of cancer with its mechanisms based on in vitro and in vivo experiments, hoping providing proof for baicalein serving as an effective and safe compound for cancer treatment in clinic in the future.
Collapse
Affiliation(s)
- Chenjing Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yaya Yu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Yanjuan Zhu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China
| | - Yanan Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Changju Ma
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Lina Ding
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ling Han
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China.
| | - Haibo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
4
|
Yan Y, Amur SA, Liu H, Shen R, Sun H, Pei Y, Guo C, Liang H. Endogenous crude Scutellaria baicalensis polysaccharide robustly enhances one-pot extraction and deglycosylation of baicalin. Int J Biol Macromol 2024; 263:130349. [PMID: 38387634 DOI: 10.1016/j.ijbiomac.2024.130349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
With the extensive application of baicalein in the treatment of cardiovascular and cerebrovascular diseases, its clinical and market demand has gradually expanded. But the natural yield of baicalein is very low, and it is mainly prepared by the deglycosylation of baicalin. However, the insolubility of baicalin in water significantly limits the deglycosylation of it under biocatalysis. To make biocatalysis of baicalin more efficient and environmental, a strategy was designed to enhance its water solubility through the solubilization mechanism of endogenous biological macromolecules, and the effect on the activity of glucuronidase was further explored. The results showed that wrapping with Scutellaria baicalensis polysaccharide (SBP) significantly improved the solubility of baicalin in water (the water solubility of baicalin increased by 23 times, BI/SBP = 1/12, w/w). It was not only contributed to the efficient production of baicalein by one-pot method, but also effectively improved the deglycosylation rate of baicalin (increase by 47.04 % in aqueous solution). With the help of the solubilization of endogenous polysaccharide on baicalin in aqueous solution, a green, low-cost and efficient method (one-pot method) was designed to simultaneously extract and enzymatic hydrolyze baicalin to prepare baicalein. Under the same conditions, the yield of one-pot method is 87.17 %, which was much higher than that of the conventional method (29.38 %). In addition, one-pot method with the aid of endogenous polysaccharide could simply and conveniently prepare aglycone of other insoluble natural flavonoids, which has a wide range of industrial application value.
Collapse
Affiliation(s)
- Yucheng Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Safdar Ali Amur
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Liu
- Ji Hua Laboratory, Foshan, P. R. Guangdong Provincial Key R&D Program, China
| | - Ruoyao Shen
- Ji Hua Laboratory, Foshan, P. R. Guangdong Provincial Key R&D Program, China
| | - Huaiqing Sun
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., No.92, River road, Huangpu Development District, Guangzhou 510700, Guangdong, China
| | - Yunlin Pei
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., No.92, River road, Huangpu Development District, Guangzhou 510700, Guangdong, China
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., No.92, River road, Huangpu Development District, Guangzhou 510700, Guangdong, China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Kong Q, Zhu H, Gong W, Deng X, Liu B, Dong J. Modified Bushen Yiqi formula enhances antitumor immunity by reducing the chemotactic recruitment of M2-TAMs and PMN-MDSCs in Lewis lung cancer-bearing mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117183. [PMID: 37739106 DOI: 10.1016/j.jep.2023.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Bushen Yiqi formula (MBYF) has shown efficacy as an herbal combination therapy with anti-PD-1 for lung cancer patients. However, the underlying mechanisms of its antitumor effects in lung cancer remain unclear. AIM OF THE STUDY This study aims to observe the antitumor effect of MBYF and explore its synergistic mechanism in combination with anti-PD-1 based on the tumor immune microenvironment. MATERIALS AND METHODS The antitumor effect of MBYF was assessed in Lewis Lung Cancer (LLC)-bearing mice by evaluating tumor volume, weight, and histology in five groups (model control, MBYF 8.125 g/kg, MBYF 16.25 g/kg, MBYF 32.50 g/kg, anti-PD-1). Mechanisms were analyzed using pharmacology network and tumor RNA-sequencing. Tumor-infiltrating immune cells were measured by flow cytometry and immunohistochemistry. Targets and pathways were validated through qRT-PCR, immuno-histochemistry, and western blotting. The synergistic effect of MBYF in combination with anti-PD-1 was validated in three groups (model control, anti-PD-1, anti-PD-1+MBYF 16.25 g/kg). RESULTS MBYF inhibited tumor growth and proliferation and demonstrated safety for the heart, liver, and kidney. Mechanistically, MBYF downregulated tumor proliferation by suppressing the expression of CCND1, CTNNB1, EGFR, and the PI3K-AKT/STAT3/ERK pathway. Furthermore, MBYF may upregulated the antitumor immunity (CD4+T cells, active CD8+ T cells, and NK cells) by reducing the infiltration of M2-TAMs and PMN-MDSCs. MBYF may inhibit the recruitment of M2-TAMs by downregulating the CCR5-CCLs axis and PMN-MDSCs by the CXCR2-CXCLs axis. In vivo study confirmed that MBYF enhanced the antitumor effect of anti-PD-1 therapy. CONCLUSION Modified Bushen Yiqi formula enhances antitumor immunity in the treatment of lung cancer by reducing the chemotactic recruitment of M2-TAMs and PMN-MDSCs, suggesting its potential as an adjunct therapy to enhance anti-PD-1 responses and improve treatment outcomes. Further research and clinical studies are needed to validate and expand upon these promising findings.
Collapse
Affiliation(s)
- Qing Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Huahe Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Weiyi Gong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Chen J, Liu J, Cao D. Urine metabolomics for assessing fertility-sparing treatment efficacy in endometrial cancer: a non-invasive approach using ultra-performance liquid chromatography mass spectrometry. BMC Womens Health 2023; 23:583. [PMID: 37940929 PMCID: PMC10634093 DOI: 10.1186/s12905-023-02730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE This study aimed to reveal the urine metabolic change of endometrial cancer (EC) patients during fertility-sparing treatment and establish non-invasive predictive models to identify patients with complete remission (CR). METHOD This study enrolled 20 EC patients prior to treatment (PT) and 22 patients with CR, aged 25-40 years. Eligibility criteria consisted of stage IA high-grade EC, lesions confined to endometrium, normal hepatic and renal function, normal urine test, no contraindication for fertility-sparing treatment and no prior therapy. Urine samples were analyzed using ultraperformance liquid chromatography mass spectrometry (UPLC-MS), a technique chosen for its high sensitivity and resolution, allows for rapid, accurate identification and quantification of metabolites, providing a comprehensive metabolic profile and facilitating the discovery of potential biomarkers. Analytical techniques were employed to determine distinct metabolites and altered metabolic pathways. The statistical analyses were performed using univariate and multivariate analyses, logistic regression and receiver operating characteristic (ROC) curves to discover and validate the potential biomarker models. RESULTS A total of 108 different urine metabolomes were identified between CR and PT groups. These metabolites were enriched in ascorbate and aldarate metabolism, one carbon pool by folate, and some amino acid metabolisms pathways. A panel consisting of Baicalin, 5beta-1,3,7 (11)-Eudesmatrien-8-one, Indolylacryloylglycine, Edulitine, and Physapubenolide were selected as biomarkers, which demonstrated the best predictive ability with the AUC values of 0.982/0.851 in training/10-fold-cross-validation group, achieving a sensitivity of 0.975 and specificity of 0.967, respectively. CONCLUSION The urine metabolic analysis revealed the metabolic changes in EC patients during the fertility-sparing treatment. The predictive biomarkers present great potential diagnostic value in fertility-sparing treatments for EC patients, offering a less invasive means of monitoring treatment efficacy. Further research should explore the mechanistic underpinnings of these metabolic changes and validate the biomarker panel in larger, diverse populations due to the small sample size and single-institution nature of our study.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jiale Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv 2022; 29:2130-2161. [PMID: 35815678 PMCID: PMC9275501 DOI: 10.1080/10717544.2022.2094498] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side effects are caused by the inability of the drug to be solely delivered to the tumor when treating cancer with chemotherapy. Natural products have attracted more and more attention due to the antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the combination of natural active ingredients and chemotherapy drugs may be an effective antitumor strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of chemotherapy drugs. Nano-drug co-delivery system (NDCDS) can play an important role in the combination of natural active ingredients and chemotherapy drugs. This review provides a comprehensive summary of the research status and application prospect of nano-delivery strategies for the combination of natural active ingredients and chemotherapy drugs, aiming to provide a basis for the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Wang L, Feng T, Su Z, Pi C, Wei Y, Zhao L. Latest research progress on anticancer effect of baicalin and its aglycone baicalein. Arch Pharm Res 2022; 45:535-557. [DOI: 10.1007/s12272-022-01397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
|
9
|
Farooqi AA, Kapanova G, Kalmakhanov S, Tanbayeva G, Zhakipbekov KS, Rakhmetova VS, Syzdykbayev MK. Regulation of Cell Signaling Pathways and Non-Coding RNAs by Baicalein in Different Cancers. Int J Mol Sci 2022; 23:ijms23158377. [PMID: 35955525 PMCID: PMC9368823 DOI: 10.3390/ijms23158377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Landmark discoveries in molecular oncology have provided a wide-angle overview of the heterogenous and therapeutically challenging nature of cancer. The power of modern ‘omics’ technologies has enabled researchers to deeply and comprehensively characterize molecular mechanisms underlying cellular functions. Interestingly, high-throughput technologies have opened new horizons for the design and scientific fool-proof evaluation of the pharmacological properties of targeted chemical compounds to tactfully control the activities of the oncogenic protein networks. Groundbreaking discoveries have galvanized the expansion of the repertoire of available pharmacopoeia to therapeutically target a myriad of deregulated oncogenic pathways. Natural product research has undergone substantial broadening, and many of the drugs which constitute the backbone of modern pharmaceuticals have been derived from the natural cornucopia. Baicalein has gradually gained attention because of its unique ability to target different oncogenic signal transduction cascades in various cancers. We have partitioned this review into different sub-sections to provide a broader snapshot of the oncogenic pathways regulated by baicalein. In this review, we summarize baicalein-mediated targeting of WNT/β-catenin, AKT/mTOR, JAK/STAT, MAPK, and NOTCH pathways. We also critically analyze how baicalein regulates non-coding RNAs (microRNAs and long non-coding RNAs) in different cancers. Finally, we conceptually interpret baicalein-mediated inhibition of primary and secondary growths in xenografted mice.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
- Correspondence:
| | - Gulnara Kapanova
- Scientific Center of Anti-Infectious Drugs, 75 al-Faraby Ave, Almaty 050040, Kazakhstan;
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Sundetgali Kalmakhanov
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Gulnur Tanbayeva
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan; (S.K.); (G.T.)
| | - Kairat S. Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University KazNMU, Tole Bi St. 94, Almaty 050000, Kazakhstan;
| | - Venera S. Rakhmetova
- Department Internal Diseases, Astana Medical University, Nur-Sultan 010000, Kazakhstan;
| | - Marat K. Syzdykbayev
- Department of Anesthesiology, Reanimatology and Narcology, Semey Medical University, Semey 071400, Kazakhstan;
| |
Collapse
|
10
|
Chandrashekar N, Pandi A. Baicalein: A review on its anti-cancer effects and mechanisms in lung carcinoma. J Food Biochem 2022; 46:e14230. [PMID: 35543192 DOI: 10.1111/jfbc.14230] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022]
Abstract
Plant-derived flavonoids are reported to function as potential anti-cancer agents against different types of cancer. Baicalein (BE) is an important flavonoid found in the roots of Scutellaria baicalensis that is popularly used in Chinese medicine as an ingredient in herbal tea preparations to promote wellness. BE has been studied for its several biological effects including antioxidant, anti-inflammatory, anti-hepatotoxic, antiviral, and anti-tumor properties. BE has now been discovered to be an effective agent against lung neoplasm. The molecular factors supporting baicalein's anti-cancer activity against lung cancer and its value to human health are discussed in this article. This would help in identifying BE as a promising competent drug against lung carcinoma. PRACTICAL APPLICATIONS: Baicalein is a flavonoid obtained from the roots of Scutellaria baicalensis. It has been widely used as an antioxidant, anti-inflam5matory, anti-hepatotoxic, antiviral, and anti-cancer agent. Lung cancer is one of the most common malignancies in the world with a high fatality rate. Several studies have found that Baicalein is an important candidate for treating lung cancer. Its mechanism of action includes regulation of cell proliferation, metastasis, apoptosis, autophagy, and so on. Baicalein could be used as a novel anti-cancer drug for the treatment of lung carcinoma.
Collapse
Affiliation(s)
| | - Anandakumar Pandi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Deoghar, India
| |
Collapse
|
11
|
Core-shell lipoplexes inducing active macropinocytosis promote intranasal delivery of c-Myc siRNA for treatment of glioblastoma. Acta Biomater 2022; 138:478-490. [PMID: 34757231 DOI: 10.1016/j.actbio.2021.10.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 12/28/2022]
Abstract
Glioblastoma is the most common and aggressive primary brain tumor, whose malignancy is closely correlated with elevated proto-oncogene c-myc. Intranasal administration emerges as a potential approach to deliver gene into the brain and interfere c-Myc expression. However, powerful permeability in nasal mucosa, selective delivery to glioma and avoidance of premature release during remote transport are imperative to ensure the therapeutic effectiveness. To address the above concerns, herein we constructed a lipoplex based on pre-compression of c-Myc-targeting siRNA (sic-Myc) by octaarginine and subsequent encapsulation by liposome modified with a selected peptide derived from penetratin, named 89WP. It was found that the lipoplex exhibited a stable core-shell structure and could be preferentially internalized along with cell debris by glioma cells via active macropinocytosis. Through this cellular uptake pathway, the lipoplex avoided being entrapped by lysosome and released siRNA in cytoplasm within 4 h, inducing substantial downregulation of c-Myc mRNA and protein expression of glioma cells. Furthermore, due to significantly enhanced permeability in tumor spheroids and nasal mucosa, the lipoplex was competent to deliver more siRNA to orthotopic glioma after intranasal administration, and therefore prolonged the survival time of glioma-bearing mice by inducing apoptosis. STATEMENT OF SIGNIFICANCE: In the present work, a lipoplex was designed to address the unmet demands on intranasal siRNA delivery to the brain for treatment of glioma. First, a powerful peptide was selected to enable the lipoplex to penetrate nasal mucosa. Second, we found the lipoplex could be selectively internalized along with cell debris by glioma cells via active macropinocytosis, and recorded the entire process. This cellular uptake pathway not only prevented the lipoplex being entrapped by lysosome, but also increased distribution of the lipoplex in orthotopic glioma. Third, this lipoplex provided additional protection for siRNA to avoid premature release during transport from nasal to brain. Overall, this lipoplex improved the gene delivery efficiency of intranasal administration and was promising in the perspective of selectively silencing disease-related genes in intracranial tumor.
Collapse
|
12
|
Xiang L, Gao Y, Chen S, Sun J, Wu J, Meng X. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153727. [PMID: 34535372 DOI: 10.1016/j.phymed.2021.153727] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Globally, lung cancer is the leading cause of cancer associated mortalities. The current conventional chemotherapy remains the preferred treatment option for lung cancer, as surgical resection plays little role in the treatment of over 75% of lung cancer patients. Therefore, there is a need to develop novel potential therapeutic drugs or adjuvants with a high efficiency and safety against lung cancer. Scutellaria baicalensis Georgi, a common Chinese medicinal herb that has been in use for more than 2000 years, has recently been shown to possess significant activities against lung cancer. However, current research progress on pharmacological effects and relevant molecular mechanisms of S. baicalensis in lung cancer therapy have not been systematically summarized. PURPOSE This review aimed at elucidating on the anti-lung cancer mechanisms and antitumor efficacies of S. baicalensis as well as its active ingredients, and providing a valuable reference for further investigation in this field. METHODS We used "Scutellaria baicalensis" or the name of the compound in S. baicalensis, in combination with "lung cancer" as key words to systematically search for relevant literature from the Web of Science and PubMed databases. Publications that investigated molecular mechanisms were the only ones selected for analysis. The PRISMA guidelines were followed. RESULTS Fifty-four publications met the inclusion criteria for this study. Five anti-lung cancer mechanisms of S. baicalensis and its constituent components are discussed. These mechanisms include apoptosis induction, cell-cycle arrest, suppression of proliferation, blockade of invasion and metastasis, and overcoming drug-resistance. These compounds exhibited high antitumor efficacies and safety against lung cancer xenografts. CONCLUSION Studies should aim at elucidating on the anti-cancer mechanisms of S. baicalensis to achieve the ultimate goal of lung cancer therapy.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiyu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
13
|
Song J, Zhang H, Wang D, Wang J, Zhou J, Zhang Z, Wang J, Hu Y, Xu Q, Xie C, Lu W, Liu M. Hydrogel loading functionalized PAMAM/shRNA complex for postsurgical glioblastoma treatment. J Control Release 2021; 338:583-592. [PMID: 34481020 DOI: 10.1016/j.jconrel.2021.08.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma, the most common malignant tumor of the central nervous system, readily relapses after surgery. Based on the CD47-SIRPα axis, we designed and implanted a thermo-sensitive hydrogel loaded with a gene complex into the postoperative cavity to inhibit the immune escape of residual tumor cells after surgery. A novel non-viral vector, G5-BGG, was synthesized and formed into a gene complex with shRNA plasmid. Our results showed that the G5-BGG/shRNA871 complex downregulated CD47 protein expression, leading to enhanced phagocytosis of U87MG cells by marrow-derived macrophages. G5-BGG/pDNA complex was loaded into a poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) hydrogel. Studies confirmed that the G5-BGG/pDNA complex remained integrated in the hydrogel and was sustainably released for up to 7 days. In an in vivo orthotopic U87MG postoperative tumor model, G5-BGG/shRNA871-loaded hydrogel combined with temozolomide downregulated CD47 protein expression, increased macrophage infiltration into residual tumors, and significantly prolonged the survival time of mice, indicating potential applications for glioblastoma treatment.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Han Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Dongli Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Jing Wang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Jianfen Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Zhiyi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Jun Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Yang Hu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Qianzhu Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Min Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
14
|
Ma Y, Li G, Yu M, Cao K, Li Q, Sun X, Yang G, Wang X. Anti-Lung Cancer Targets of Radix Paeoniae Rubra and Biological Molecular Mechanism: Network Pharmacological Analyses and Experimental Validation. Onco Targets Ther 2021; 14:1925-1936. [PMID: 33758512 PMCID: PMC7981145 DOI: 10.2147/ott.s261071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To systematically explore the pharmacological mechanism of Radix Paeoniae Rubra (RPR) against lung cancer (LC). Methods A network pharmacology approach, which involves active ingredients and target forecast, network construction, gene ontology and pathway enrichment, was employed in this research. In addition, the effect of Baicalein (BAI) in RPR on A549 cells was researched in vitro and in vivo. Results A total of 159 targets of the 29 active components in RPR were procured by pharmacokinetic parameters. The network analysis showed that β-sitosterol, baicalein, (+)-catechin, ellagic acid, stigmasterol, (2R, 3R)-4-methoxyl-distylin were the main ingredients and JUN, VEGFA, BCL2 were the hub targets of RPR in the treatment of LC. The functional enrichment analysis showed that RPR likely was useful to LC by regulating numerous pathways including Pathways in cancer, MAPK signaling pathway and so on. MTT results showed that 100μM, 200μM, 400μM of BAI had a time and dose-dependent inhibitory effect on A549 cells proliferation; Wound healing and transwell assays showed that 100μM, 200μM, 400μM of BAI could significantly restrain the migration and invasion of A549 cells; Flow cytometry assay results showed that 100μM, 200μM, 400μM of BAI could induce apoptosis of A549 cells. In vivo, BAI (50, 100 mg/kg) significantly inhibited tumor growth and promoted apoptosis of tumor cells compared with the control group. Conclusion BAI in RPR may exert anti-tumor effects by inhibiting the proliferation, migration and invasion of LC cells, and inducing the apoptosis of LC cells.
Collapse
Affiliation(s)
- Yunfei Ma
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Guangda Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mingwei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Kexin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Qiwei Li
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xu Sun
- Department of Integrated Chinese and Western Medicine, The Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guowang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xiaomin Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Zhou TJ, Liu JF, Wang P, Hu AN, Chen LL, Zan JF. Identification of Targets and Active Components of Yiqi SanJie Formula Against Lung Neoplasms Based on Network Pharmacology Analysis and Molecular Docking. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21997677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Yiqi Sanjie formula (YQSJF) is mainly applied clinically for the treatment of lung neoplasms. The purpose of this study was to explore the pharmacodynamics of the active components of YQSJF and the mechanism of therapeutic effects in the treatment of lung neoplasm diseases based on network pharmacology. The network of component-target, target-pathway, and pathway-disease of YQSJF was constructed by using Cytoscape software. According to the screening result, 37 key components, 57 important targets, and 866 candidate pathways were obtained. The enrichment analysis results indicated that YQSJF might play a therapeutic role in lung cancer by regulating several signaling pathways, such as the PI3K-AKT, non-small cell lung cancer, small cell lung cancer, and apoptosis pathways. There were 53 intersection genes between YQSJF and the lung cancer gene, 52 common genes, and 11 key targets, including CASP8, CASP9, AR, ESR1, PTGS2, NOS3, PGR, TGFB1, PPARG, RELA, and NOS2, screened by using Protein-Protein Interaction (PPI) analysis. These could be the potential therapeutic targets of YQSJF against lung cancer. Enrichment analysis of the intersection gene pathways revealed 10 major functional pathways, including the VEGF, apoptosis, and IL-17 signaling pathways. The molecular docking results showed the potential regulating activity of kaempferol against AR, pelargonidin against PGR, and baicalein against both PTGS2 and AR. In conclusion, combinational network pharmacology analysis results indicated that YQSJF might present its efficacy of alleviating lung neoplasm symptoms through multiple targets in a synergetic way.
Collapse
Affiliation(s)
- Tian-jiao Zhou
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun-feng Liu
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, China
| | - An-na Hu
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Lin-lin Chen
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun-feng Zan
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
- Ministry of Education Key Laboratory of Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
16
|
Tuli HS, Aggarwal V, Kaur J, Aggarwal D, Parashar G, Parashar NC, Tuorkey M, Kaur G, Savla R, Sak K, Kumar M. Baicalein: A metabolite with promising antineoplastic activity. Life Sci 2020; 259:118183. [PMID: 32781058 DOI: 10.1016/j.lfs.2020.118183] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Cancer, being a multifactorial disease has diverse presentation in different subgroups which is mainly attributed to heterogenous presentation of tumor cells. This cancer cell heterogeneity is the major reason for variable response to standard chemotherapeutic regimes owing to which high relapse rate and multi-drug resistance has increasingly been reported over the past decade. Interestingly, the research on natural compounds in combination with standard therapies have reported with interesting and promising results from the pre-clinical trials and few of which have also been tested in other phases of clinical trials. This review focusses on baicalein, an emerging anti-cancerous natural compound, its chemistry and mechanism of action. In view of promising pre-clinical this review is mainly motivated by the results observed from baicalein treatment of different cancer cell population. With the advancing scientific evidence on the anti-malignant potential of baicalein with respect to its pharmacological activities encompassing from anti-inflammatory to anti-angiogenic/anti-metastatic effects, the focus is mainly directed to understanding the precise mechanism of action of baicalein. In the process of understanding the underlying signaling cascades, the role of mitogen activated protein kinase (MAPK), mammalian target of rapamycin (mTOR), AKT serine/threonine protein kinase B (AKT), poly(ADP-ribose) polymerase (PARP), matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9) and caspase-3/-8,-9 have been highlighted as the major players for baicalein anti-malignant potential. This is also supported by the interesting pre-clinical findings which cumulatively pave the way ahead for development of baicalein as an adjunct anti-cancer treatment with chemotherapeutic agents.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India.
| | - Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | | | - Muobarak Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vileparle-West, Mumbai-56, India
| | - Raj Savla
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vileparle-West, Mumbai-56, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| |
Collapse
|