1
|
Ye L, Zhao J, Xiao Z, Gu W, Liu X, Ajuyo NMC, Min Y, Pei Y, Wang D. Integrative Human Genetic and Cellular Analysis of the Pathophysiological Roles of AnxA2 in Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1274. [PMID: 39456526 PMCID: PMC11504888 DOI: 10.3390/antiox13101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is an intractable and progressive neurodegenerative disease. Amyloid beta (Aβ) aggregation is the hallmark of AD. Aβ induces neurotoxicity through a variety of mechanisms, including interacting with membrane receptors to alter downstream signaling, damaging cellular or organelle membranes, interfering with protein degradation and synthesis, and inducing an excessive immune-inflammatory response, all of which lead to neuronal death and other pathological changes associated with AD. In this study, we extracted gene expression profiles from the GSE5281 and GSE97760 microarray datasets in the GEO (Gene Expression Omnibus) database, as well as from the Human Gene Database. We identified differentially expressed genes in the brain tissues of AD patients and healthy persons. Through GO, KEGG, and ROC analyses, annexin A2 (AnxA2) was identified as a putative target gene. Notably, accumulating evidence suggests that intracellular AnxA2 is a key regulator in various biological processes, including endocytosis, transmembrane transport, neuroinflammation, and apoptosis. Thus, we conducted a series of cell biology experiments to explore the biological function of AnxA2 in AD. The results indicate that AnxA2 gene knockdown primarily affects oxidative phosphorylation, cell cycle, AD, protein processing in the endoplasmic reticulum, SNARE interactions in vesicular transport, and autophagy. In SH-SY5Y cells secreting Aβ42, AnxA2 gene knockdown exacerbated Aβ42-induced cytotoxicity, including cell death, intracellular ROS levels, and neuronal senescence, altered cell cycle, and reduced ATP levels, suggesting its critical role in mitochondrial function maintenance. AnxA2 gene knockdown also exacerbated the inhibitory effect of Aβ42 on cell migration. AnxA2 overexpression reduced the inflammatory response induced by Aβ42, while its absence increased pro-inflammatory and decreased anti-inflammatory responses. Furthermore, AnxA2 gene knockdown facilitated apoptosis and decreased autophagy. These results indicated potential pathophysiological roles of AnxA2 in AD.
Collapse
Affiliation(s)
- Lianmeng Ye
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Jiazheng Zhao
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Wenyu Gu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Xiaoxuan Liu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Nuela Manka’a Che Ajuyo
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
| | - Yi Min
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yechun Pei
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Xu X, Tao N, Sun C, Hoffman RD, Shi D, Ying Y, Dong S, Gao J. Ligustilide prevents thymic immune senescence by regulating Thymosin β15-dependent spatial distribution of thymic epithelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155216. [PMID: 38061285 DOI: 10.1016/j.phymed.2023.155216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Thymus is the most crucial organ connecting immunity and aging. The progressive senescence of thymic epithelial cells (TECs) leads to the involution of thymus under aging, chronic stress and other factors. Ligustilide (LIG) is a major active component of the anti-aging Chinese herbal medicine Angelica sinensis (Oliv.) Diels, but its role in preventing TEC-based thymic aging remains elusive. PURPOSE This study explored the protective role of Ligustilide in alleviating ADM (adriamycin) -induced thymic immune senescence and its underlying molecular mechanisms. METHOD The protective effect of Ligustilide on ADM-induced thymic atrophy was examined by mouse and organotypic models, and conformed by SA-β-gal staining in TECs. The abnormal spatial distribution of TECs in the senescent thymus was analyzed using H&E, immunofluorescence and flow cytometry. The possible mechanisms of Ligustilide in ADM-induced thymic aging were elucidated by qPCR, fluorescence labeling and Western blot. The mechanism of Ligustilide was subsequently validated through actin polymerization inhibitor, genetic engineering to regulate Thymosin β15 (Tβ15) and Tβ4 expression, molecular docking and β Thymosin-G-actin cross-linking assay. RESULTS At a 5 mg/kg dose, Ligustilide markedly ameliorated ADM-induced weight loss and limb grip weakness in mice. It also reversed thymic damage and restored positive selection impaired by ADM. In vitro, ADM disrupted thymic structure, reduced TECs number and hindered double negative (DN) T cell differentiation. Ligustilide counteracted these effects, promoted TEC proliferation and reticular differentiation, leading to an increase in CD4+ single positive (CD4SP) T cell proportion. Mechanistically, ADM diminished the microfilament quantity in immortalized TECs (iTECs), and lowered the expression of cytoskeletal marker proteins. Molecular docking and cross-linking assay revealed that Ligustilide inhibited the protein binding between G-actin and Tβ15 by inhibiting the formation of the Tβ15-G-actin complex, thus enhancing the microfilament assembly capacity in TECs. CONCLUSION This study, for the first time, reveals that Ligustilide can attenuate actin depolymerization, protects TECs from ADM-induced acute aging by inhibiting the binding of Tβ15 to G-actin, thereby improving thymic immune function. Moreover, it underscores the interesting role of Ligustilide in maintaining cytoskeletal assembly and network structure of TECs, offering a novel perspective for deeper understanding of anti thymic aging.
Collapse
Affiliation(s)
- Xie Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Nana Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Caihua Sun
- Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Robert D Hoffman
- Yo San University of Traditional Chinese Medicine, Los Angeles, CA 90066, USA.
| | - Dongling Shi
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China.
| | - Yuyuan Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Shujie Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China.
| |
Collapse
|
3
|
Yang X, Zhang Y, Luo JX, Zhu T, Ran Z, Mu BR, Lu MH. Targeting mitophagy for neurological disorders treatment: advances in drugs and non-drug approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3503-3528. [PMID: 37535076 DOI: 10.1007/s00210-023-02636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mitochondria serve as a vital energy source for nerve cells. The mitochondrial network also acts as a defense mechanism against external stressors that can threaten the stability of the nervous system. However, excessive accumulation of damaged mitochondria can lead to neuronal death. Mitophagy is an essential pathway in the mitochondrial quality control system and can protect neurons by selectively removing damaged mitochondria. In most neurological disorders, dysfunctional mitochondria are a common feature, and drugs that target mitophagy can improve symptoms. Here, we reviewed the role of mitophagy in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, stroke, and traumatic brain injuries. We also summarized drug and non-drug approaches to promote mitophagy and described their therapeutic role in neurological disorders in order to provide valuable insight into the potential therapeutic agents available for neurological disease treatment. However, most studies on mitophagy regulation are based on preclinical research using cell and animal models, which may not accurately reflect the effects in humans. This poses a challenge to the clinical application of drugs targeting mitophagy. Additionally, these drugs may carry the risk of intolerable side effects and toxicity. Future research should focus on the development of safer and more targeted drugs for mitophagy.
Collapse
Affiliation(s)
- Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia-Xin Luo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Li X, Qin Y, Ye S, Song H, Zhou P, Cai B, Wang Y. Protective effect of Huangpu Tongqiao capsule against Alzheimer's disease through inhibiting the apoptosis pathway mediated by endoplasmic reticulum stress in vitro and in vivo. Saudi Pharm J 2022; 30:1561-1571. [PMID: 36465852 PMCID: PMC9715644 DOI: 10.1016/j.jsps.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022] Open
Abstract
Objectives Huangpu Tongqiao Capsule (HPTQC) is a traditional Chinese medicine (TCM) that has been used to treat Alzheimer's disease (AD). This study was to explore the pharmacological action and molecular mechanism of HPTQC in the treatment of AD. Methods The possible targets of HTPQC were predicted by the molecular docking technique. Intraperitoneal injection of D-galactose and bilateral injection of Aβ25-35 in hippocampus induced AD rat model. Morris water maze was used to observe learning and memory function. The primary hippocampal neurons were induced by Aβ25-35. Moreover, the apoptosis rate of hippocampal nerve cells was detected through AnnexinV/PI double standard staining. The mRNA and protein levels of GRP78, CHOP, Caspase 12, Caspase 9, and Caspase 3 were detected by PCR and western blot. Results The prediction results suggest that HPTQC may act on GRP78. HPTQC significantly improved the learning and memory function, and decreased neuronal apoptosis in vivo and in vitro. In addition, HPTQC could decrease the mRNA and protein expression levels of GRP78, CHOP, Caspase12, Caspase9, and Caspase3, and the effect trend was consistent with the specific inhibitor of GRP78. Conclusions HPTQC has a neuroprotective effect against AD by inhibiting the apoptosis pathway mediated by endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Xinquan Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yunpeng Qin
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shu Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
- Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei 230012, China
| | - Yan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
5
|
Long Y, Li D, Yu S, Shi A, Deng J, Wen J, Li XQ, Ma Y, Zhang YL, Liu SY, Wan JY, Li N, Yang M, Han L. Medicine-food herb: Angelica sinensis, a potential therapeutic hope for Alzheimer's disease and related complications. Food Funct 2022; 13:8783-8803. [PMID: 35983893 DOI: 10.1039/d2fo01287a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, which has brought a huge burden to the world. The current therapeutic approach of one-molecule-one-target strategy fails to address the issues of AD because of multiple pathological features of AD. Traditionally, the herb of Angelica sinensis (AS) comes from the root of an umbrella plant Angelica sinensis (Oliv.) Diels. As a typical medicine-food herb, studies have shown that AS can alleviate AD and AD-complications by multiple targets through the various foundations of pharmaceutical material and dietary supply basis. Therefore, this review summarizes the pharmacological effects of AS for the treatment of AD and AD-complications for the first time. AS contains many effective components, such as ligustilide, z-ligustilide, n-butylidenephthalide, α-pinene, p-cymene, myrcene, ferulic acid, vanillic acid and coniferyl ferulate. It is found that AS, AS-active compounds and AS-compound recipes mainly treat AD through neuroprotective, anti-inflammation, and anti-oxidant effects, improving mitochondrial dysfunction, anti-neuronal apoptosis, regulating autophagy, regulating intestinal flora and enhancing the central cholinergic system, which shows the multi-component and multi-target effect of AS. The role of dietary supplement components in AS for AD intervention is summarized, including vitamin B12, folic acid, arginine, and oleic acid, which can improve the symptoms of AD. Besides, this review focuses on the safety and toxicity evaluation of AS, which provides a basis for its application. This review will provide further support for the research on AD and the application of medicine-food herb AS in a healthy lifestyle in the future.
Collapse
Affiliation(s)
- Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao-Qiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu-Lu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Song-Yu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jin-Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ming Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Sun L, Ye X, Wang L, Yu J, Wu Y, Wang M, Dai L. A Review of Traditional Chinese Medicine, Buyang Huanwu Decoction for the Treatment of Cerebral Small Vessel Disease. Front Neurosci 2022; 16:942188. [PMID: 35844225 PMCID: PMC9278698 DOI: 10.3389/fnins.2022.942188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is often referred to as “collaterals disease” in traditional Chinese medicine (TCM), and commonly includes ischemic and hemorrhagic CSVD. TCM has a long history of treating CSVD and has demonstrated unique efficacy. Buyang Huanwu Decoction (BHD) is a classical TCM formula that has been used for the prevention and treatment of stroke for hundreds of years. BHD exerts its therapeutic effects on CSVD through a variety of mechanisms. In this review, the clinical and animal studies on BHD and CSVD were systematically introduced. In addition, the pharmacological mechanisms, active components, and clinical applications of BHD in the treatment of CSVD were reviewed. We believe that an in-depth understanding of BHD, its pharmacological mechanism, disease-drug interaction, and other aspects will help in laying the foundation for its development as a new therapeutic strategy for the treatment of CSVD.
Collapse
|
7
|
Zhou QM, Zhao HY, Ma C, Huang L, Liu J, Guo L, Peng C, Xiong L. Pocahemiketone A, a Sesquiterpenoid Possessing a Spirocyclic Skeleton with a Hemiketal Endoperoxide Unit, Alleviates Aβ 25-35-Induced Pyroptosis and Oxidative Stress in SH-SY5Y Cells. Org Lett 2022; 24:4734-4738. [PMID: 35749446 DOI: 10.1021/acs.orglett.2c01587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pocahemiketone A, a novel sesquiterpenoid possessing a unique spirocyclic skeleton with a hemiketal endoperoxide unit, was isolated from the essential oil of Pogostemon cablin. Its structure was determined by spectroscopic methods and single-crystal X-ray diffraction analyses. Pocahemiketone A exhibits a significant neuroprotective effect against Aβ25-35-induced damage in SH-SY5Y cells by inhibiting NLRP3 inflammasome-mediated pyroptosis and oxidative stress. These results indicate that pocahemiketone A has great potential for use in the treatment of Alzheimer's disease.
Collapse
|
8
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|