1
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
2
|
Zhao Y, Deng S, Bai Y, Guo J, Kai G, Huang X, Jia X. Promising natural products against SARS-CoV-2: Structure, function, and clinical trials. Phytother Res 2022; 36:3833-3858. [PMID: 35932157 PMCID: PMC9538226 DOI: 10.1002/ptr.7580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
The corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus type 2 (SARS-COV-2) poses a severe threat to human health and still spreads globally. Due to the high mutation ratio and breakthrough infection rate of the virus, vaccines and anti-COVID-19 drugs require continual improvements. Drug screening research has shown that some natural active products can target the critical proteins of SARS-CoV-2, including 3CLpro, ACE2, FURIN, and RdRp, which could produce great inhibitory effects on SARS-COV-2. In addition, some natural products have displayed activities of immunomodulation, antiinflammatory, and antihepatic failure in COVID-19 clinical trials, which may relate to their non-monomeric structures. However, further evaluation and high-quality assessments, including safety verification tests, drug interaction tests, and clinical trials, are needed to substantiate natural products' multi-target and multi-pathway effects on COVID-19. Here, we review the literature on several promising active natural products that may act as vaccine immune enhancers or provide targeted anti-COVID-19 drugs. The structures, mechanisms of action, and research progress of these natural products are analyzed, to hopefully provide effective ideas for the development of targeted drugs that possess better structure, potency, and safety.
Collapse
Affiliation(s)
- Yan Zhao
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Shanshan Deng
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Yujiao Bai
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese MedicineChengduChina
| | - Guoyin Kai
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinhe Huang
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Xu Jia
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| |
Collapse
|
3
|
Liu Q, Kwan KY, Cao T, Yan B, Ganesan K, Jia L, Zhang F, Lim C, Wu Y, Feng Y, Chen Z, Liu L, Chen J. Broad-spectrum antiviral activity of Spatholobus suberectus Dunn against SARS-CoV-2, SARS-CoV-1, H5N1, and other enveloped viruses. Phytother Res 2022; 36:3232-3247. [PMID: 35943221 PMCID: PMC9537938 DOI: 10.1002/ptr.7452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The current COVID-19 pandemic caused by SARS-Cov-2 is responsible for more than 6 million deaths globally. The development of broad-spectrum and cost-effective antivirals is urgently needed. Medicinal plants are renowned as a complementary approach in which antiviral natural products have been established as safe and effective drugs. Here, we report that the percolation extract of Spatholobus suberectus Dunn (SSP) is a broad-spectrum viral entry inhibitor against SARS-CoV-1/2 and other enveloped viruses. The viral inhibitory activities of the SSP were evaluated by using pseudotyped SARS-CoV-1 and 2, HIV-1ADA and HXB2 , and H5N1. SSP effectively inhibited viral entry and with EC50 values ranging from 3.6 to 5.1 μg/ml. Pre-treatment of pseudovirus or target cells with SSP showed consistent inhibitory activities with the respective EC50 value of 2.3 or 2.1 μg/ml. SSP blocked both SARS-CoV-2 spike glycoprotein and the host ACE2 receptor. In vivo studies indicated that there was no abnormal toxicity and behavior in long-term SSP treatment. Based on these findings, we concluded that SSP has the potential to be developed as a drug candidate for preventing and treating COVID-19 and other emerging enveloped viruses.
Collapse
Affiliation(s)
- Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Ka-Yi Kwan
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianyu Cao
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Immunology and Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bingpeng Yan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Jia
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Feng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Chunyu Lim
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Liu
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| |
Collapse
|
4
|
Bachheti RK, Worku LA, Gonfa YH, Zebeaman M, Deepti, Pandey DP, Bachheti A. Prevention and Treatment of Cardiovascular Diseases with Plant Phytochemicals: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5741198. [PMID: 35832515 PMCID: PMC9273387 DOI: 10.1155/2022/5741198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the world's leading killers, accounting for 30% deaths. According to the WHO report, CVDs kill 17.9 million people per year, and there will be 22.2 million deaths from CVD in 2030. The death rates rise as people get older. Regarding gender, the death rate of women by CVD (51%) is higher than that of men (42%). To decrease and prevent CVD, most people rely on traditional medicine originating from the plant (phytochemicals) in addition to or in preference to commercially available drugs to recover from their illness. The CVD therapy efficacy of 92 plants, including 15 terrestrial plants, is examined. Some medicinal plants well known to treat CVD are, Daucus carota, Nerium oleander, Amaranthus Viridis, Ginkgo biloba, Terminalia arjuna, Picrorhiza kurroa, Salvia miltiorrhiza, Tinospora cordifolia, Mucuna pruriens, Hydrocotyle asiatica, Bombax ceiba, and Andrographis paniculate. The active phytochemicals found in these plants are flavonoids, polyphenols, plant sterol, plant sulphur compounds, and terpenoids. A general flavonoid mechanism of action is to prevent low-density lipoprotein oxidation, which promotes vasodilatation. Plant sterols prevent CVD by decreasing cholesterol absorption in the blood. Plant sulphur compound also prevent CVD by activation of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and inhibition of cholesterol synthesis. Quinone decreases the risk of CVD by increasing ATP production in mitochondria while terpenoids by decreasing atherosclerotic lesion in the aortic valve. Although several physiologically active compounds with recognized biological effects have been found in various plants because of the increased prevalence of CVD, appropriate CVD prevention and treatment measures are required. More research is needed to understand the mechanism and specific plants' phytochemicals responsible for treating CVD.
Collapse
Affiliation(s)
- Rakesh Kumar Bachheti
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Limenew Abate Worku
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Yilma Hunde Gonfa
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, Faculty of Natural and Computational Science, Ambo University, Ambo, Ethiopia
| | - Meseret Zebeaman
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Deepti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| | - D. P. Pandey
- Department of Chemistry, Government P. G. College, Uttarkashi, India
| | - Archana Bachheti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| |
Collapse
|