1
|
Li L, Yang N, Sun J, Wei L, Gao Y. IGF2BP3-dependent N6-methyladenosine modification of USP49 promotes carboplatin resistance in retinoblastoma by enhancing autophagy via regulating the stabilization of SIRT1. Kaohsiung J Med Sci 2024; 40:1043-1056. [PMID: 39497328 PMCID: PMC11618494 DOI: 10.1002/kjm2.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 12/06/2024] Open
Abstract
Retinoblastoma (RB) poses significant challenges in clinical management due to the emergence of resistance to conventional chemotherapeutic agents, particularly carboplatin (CBP). In this study, we investigated the molecular mechanisms underlying CBP resistance in RB, with a focus on the role of autophagy and the influence of ubiquitin-specific peptidase 49 (USP49). We observed upregulation of USP49 in RB tissues and cell lines, correlating with disease progression. Functional assays revealed that USP49 promoted aggressive proliferation and conferred CBP resistance in RB cells. Furthermore, USP49 accelerated tumor growth and induced CBP resistance in vivo. Mechanistically, we found that USP49 facilitated CBP resistance by promoting autophagy activation. In addition, we identified insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3)-mediated N6-methyladenosine (m6A) modification of USP49 as a regulatory mechanism, wherein IGF2BP3 upregulated USP49 expression in an m6A-dependent manner. Moreover, USP49 stabilized SIRT1, a protein associated with CBP resistance and autophagy, by inhibiting its ubiquitination and degradation. Rescue experiments confirmed the pivotal role of SIRT1 in USP49-mediated CBP resistance. Our findings delineate a novel molecular network involving USP49-mediated autophagy in promoting CBP resistance in RB, offering potential targets for therapeutic intervention to enhance treatment efficacy and improve outcomes for RB patients.
Collapse
Affiliation(s)
- Lei Li
- Department of OphthalmologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| | - Ning Yang
- Department of OphthalmologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| | - Jian‐Hong Sun
- Department of OphthalmologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| | - Li‐Juan Wei
- Department of OphthalmologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| | - Yuan Gao
- Department of OphthalmologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouChina
| |
Collapse
|
2
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Seo JH, Ryu S, Cheon SY, Lee SJ, Won SJ, Yim CD, Lee HJ, Hah YS, Park JJ. Sirt6-Mediated Cell Death Associated with Sirt1 Suppression in Gastric Cancer. Cancers (Basel) 2024; 16:387. [PMID: 38254877 PMCID: PMC10814469 DOI: 10.3390/cancers16020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Gastric cancer, one of the leading causes of cancer-related death, is strongly associated with H. pylori infection, although other risk factors have been identified. The sirtuin (Sirt) family is involved in the tumorigenesis of gastric cancer, and sirtuins can have pro- or anti-tumorigenic effects. METHODS After determining the overall survival rate of gastric cancer patients with or without Sirt6 expression, the effect of Sirt6 upregulation was also tested using a xenograft mouse model. The regulation of Sirt6 and Sirt1, leading to the induction of mouse double minute 2 homolog (MDM2) and reactive oxygen species (ROS), was mainly analyzed using Western blotting and immunofluorescence staining, and gastric cancer cell (SNU-638) death associated with these proteins was measured using flow cytometric analysis. RESULTS Sirt6 overexpression led to Sirt1 suppression in gastric cancer cells, resulting in a higher level of gastric cancer cell death in vitro and a reduced tumor volume. ROS and MDM2 expression levels were upregulated by Sirt6 overexpression and/or Sirt1 suppression according to Western blot analysis. The upregulated ROS ultimately led to gastric cancer cell death as determined via Western blot and flow cytometric analysis. CONCLUSION We found that the upregulation of Sirt6 suppressed Sirt1, and Sirt6- and Sirt1-induced gastric cancer cell death was mediated by ROS production. These findings highlight the potential of Sirt6 and Sirt1 as therapeutic targets for treating gastric cancer.
Collapse
Affiliation(s)
- Ji Hyun Seo
- Department of Pediatrics, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
| | - Somi Ryu
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - So Young Cheon
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea;
| | - Seong-Jun Lee
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Seong-Jun Won
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Chae Dong Yim
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Hyun-Jin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 06973, Republic of Korea
| | - Young-Sool Hah
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea;
| | - Jung Je Park
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea;
| |
Collapse
|
4
|
Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response. Pharmacol Res 2023; 189:106695. [PMID: 36780958 DOI: 10.1016/j.phrs.2023.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Autophagy is defined as a "self-digestion" signal, and it is a cell death mechanism its primary function is degrading toxic agents and aged organelles to ensure homeostasis in cells. The basic leve ls of autophagy are found in cells, and when its levels exceed to standard threshold, cell death induction is observed. Autophagy dysregulation in cancer has been well-documented, and regulation of this pathway by epigenetic factors, especially microRNAs (miRNAs), is interesting and noteworthy. miRNAs are considered short endogenous RNAs that do not encode functional proteins, and they are essential regulators of cell death pathways such as apoptosis, necroptosis, and autophagy. Accumulating data has revealed miRNA dysregulation (upregulation or downregulation) during tumor progression, and their therapeutic manipulation provides new insight into cancer therapy. miRNA/autophagy axis in human cancers has been investigated an exciting point is the dual function of both autophagy and miRNAs as oncogenic and onco-suppressor factors. The stimulation of pro-survival autophagy by miRNAs can increase the survival rate of tumor cells and mediates cancer metastasis via EMT inductionFurthermore, pro-death autophagy induction by miRNAs has a negative impact on the viability of tumor cells and decreases their survival rate. The miRNA/autophagy axis functions beyond regulating the growth and invasion of tumor cells, and they can also affect drug resistance and radio-resistance. These subjects are covered in the current review regarding the new updates provided by recent experiments.
Collapse
|