1
|
Yan HX, Zhang YZ, Niu YQ, Wang YW, Liu LH, Tang YP, Huang JM, Leung ELH. Investigating the interaction between calcium signaling and ferroptosis for novel cancer treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156377. [PMID: 39798340 DOI: 10.1016/j.phymed.2025.156377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Drug resistance in cancer is steadily rising, making the development of new therapeutic targets increasingly critical for improving treatment outcomes. PURPOSE The mutual regulation of ions is essential for cell growth. Based on this concept, ion interference strategies offer a highly effective approach for cancer treatment. Calcium ions (Ca2+), as major second messengers, are closely associated with ion exchange and homeostasis. Disruptions in this balance can lead to cell death. However, while iron ions are also crucial, the connection between Ca2+and iron-induced cell death (ferroptosis) has not been well established. Therefore, this study suggests that Ca2+ may play a role in the induction of ferroptosis, presenting a novel and efficient target for cancer therapy. STUDY DESIGN PubMed, Google Scholar, and Web of Science databases were systematically searched for articles published in the past 15 years on the mechanisms of calcium ion-induced ferroptosis in cancer and related drugs. RESULTS The analysis highlights how Ca2+regulate ferroptosis. The mechanisms by which Ca2+influence ferroptosis are summarized based on existing literature, and relevant drugs that act on Ca2+/ferroptosis axis are outlined. CONCLUSION Ca2+ regulate ferroptosis primarily through the modulation of reactive oxygen species (ROS) and glutathione (GSH) levels, a mechanism that applies to a wide range of cancer cells as well as paracancerous and normal cells in cancer treatment. Furthermore, plant-derived active compounds exhibit potent anticancer properties and often act on the Ca2+/ferroptosis axis. These natural compounds could play a significant role in the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Hao-Xin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yu-Qing Niu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China
| | - Yu-Wei Wang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China
| | - Li-Hua Liu
- Economics and Management Yanbian University, Yanji, PR China
| | - Yu-Ping Tang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China.
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| |
Collapse
|
2
|
Song JJ, Fang X, Li CY, Jiang Y, Li JX, Wu S, Guo J, Liu Y, Fan H, Huang YB, Wei YK, Kong Y, Zhao Q, Xu JJ, Hu YH, Chen XY, Yang L. A 2-oxoglutarate-dependent dioxygenase converts dihydrofuran to furan in Salvia diterpenoids. PLANT PHYSIOLOGY 2022; 188:1496-1506. [PMID: 34893909 PMCID: PMC8896610 DOI: 10.1093/plphys/kiab567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 05/07/2023]
Abstract
Tanshinone ⅡA (TⅡA), a diterpene quinone with a furan ring, is a bioactive compound found in the medicinal herb redroot sage (Salvia miltiorrhiza Bunge), in which both furan and dihydrofuran analogs are present in abundance. Progress has been made recently in elucidating the tanshinone biosynthetic pathway, including heterocyclization of the dihydrofuran D-ring by cytochrome P450s; however, dehydrogenation of dihydrofuran to furan, a key step of furan ring formation, remains uncharacterized. Here, by differential transcriptome mining, we identified six 2-oxoglutarate-dependent dioxygenase (2-ODD) genes whose expressions corresponded to tanshinone biosynthesis. We showed that Sm2-ODD14 acts as a dehydrogenase catalyzing the furan ring aromatization. In vitro Sm2-ODD14 converted cryptotanshinone to TⅡA and thus was designated TⅡA synthase (SmTⅡAS). Furthermore, SmTⅡAS showed a strict substrate specificity, and repression of SmTⅡAS expression in hairy root by RNAi led to increased accumulation of total dihydrofuran-tanshinones and decreased production of furan-tanshinones. We conclude that SmTⅡAS controls the metabolite flux from dihydrofuran- to furan-tanshinones, which influences medicinal properties of S. miltiorrhiza.
Collapse
Affiliation(s)
- Jiao-Jiao Song
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Xu Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sheng Wu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yan-Bo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu-Kun Wei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Author for communication:
| |
Collapse
|
3
|
Analysis of Antioxidant Phytochemicals and Anti-Inflammatory Effect from Vitex rotundifolia L.f. Antioxidants (Basel) 2022; 11:antiox11030454. [PMID: 35326104 PMCID: PMC8944582 DOI: 10.3390/antiox11030454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/08/2023] Open
Abstract
An extraction method using 80% EtOH was selected and applied to obtain the total extracts from leaves, flowers, fruits, twigs, and roots of Vitex rotundifolia L.f. based on the antioxidant activity-guided experiments. Subsequently, total extract from each part of V. rotundifolia was successfully partitioned into fractions, which were evaluated for their antioxidant and anti-inflammatory properties via DPPH, ABTS, and NO assays, respectively. Among them, EtOAc (E) and n-butanol (B) fractions showed the potent antioxidant activity and the methylene chloride (MC) fractions of roots, leaves, and fruits that exhibited strong scavenging activity on DPPH and ABTS radicals. In the anti-inflammatory assay, n-hexane (H) and MC fractions of leaves potently inhibited NO production in LPS-stimulated RAW264.7 cells, followed by E fractions derived from fruits, flowers, twigs, and roots, along with B fractions from flowers and twigs. Additionally, a comprehensive HPLC-decoupled MS profiling was established and validated using seven isolated marker compounds (1–7), which were identified by analysis of their UV, NMR, and MS data. The established method was also applied for quantification of these marker compounds in each organ collected from different locations, and to assess their antioxidant capacity by a screening DPPH-HPLC method. Principal component analysis suggested the botanical organs from this plant correlated with the marker compound contents in association with bioactivity. The study results are a prelude to further studies involving the active fractions and provide a comprehensive insight into the functional products of this plant against oxidative diseases.
Collapse
|
4
|
The Cyr61 Is a Potential Target for Rotundifuran, a Natural Labdane-Type Diterpene from Vitex trifolia L., to Trigger Apoptosis of Cervical Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6677687. [PMID: 34234887 PMCID: PMC8218918 DOI: 10.1155/2021/6677687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 12/26/2022]
Abstract
Cervical cancer is a common female malignant tumor that seriously threatens human health. This study explored the anticervical cancer effects and potential mechanisms of Rotundifuran (RTF), a natural product isolated from Vitex trifolia L. In this study, we found that RTF can suppress the proliferation of cervical cancer cell lines, including HeLa and SiHa cells (with the IC50 less than 10 μM), via induction of apoptosis in vitro, and the antitumor effect of RTF is further confirmed on the HeLa cell-inoculated xenograft model. In addition, our results proved that the antitumor effects of RTF might be related with the reactive oxygen species- (ROS-) induced mitochondrial-dependent apoptosis through MAPK and PI3K/Akt signal pathways. Using proteomics analysis and the drug affinity responsive target stability- (DARTS-) combined mass spectrometry (DARTS-MS), Cyr61 was indicated as a potential target for RTF in cervical cancer cells. Our present study would be beneficial for the development of RTF as a candidate for treatment of cervical cancer in the future.
Collapse
|
5
|
Ban Y, Xia T, Jing R, Guo Y, Geng Y, Ye Q, Zheng C. Vitex Diterpenoids: Structural Diversity and Pharmacological Activity. Curr Pharm Des 2020; 26:138-159. [PMID: 31840598 DOI: 10.2174/1381612825666191216151703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
Plants of the genus Vitex (Verbenaceae) are mainly distributed throughout tropical and temperate regions, and many Vitex plants have been traditionally used in folk medicine. Plants of this genus are a rich source of diterpenoids, which not only displayed versatile structural diversity with potential chemotaxonomical significance but also exhibited a wide range of biological activities, mainly including in vitro cytotoxic, antiinflammatory, antimicrobial, hormone level-regulating and antiangiogenic activities. Recently, a series of bioactive diterpenoids, with interesting carbon skeletons, have been reported and gathered considerable interest. This article systematically reviewed diterpenoids isolated from the genus Vitex that appeared in the literature up to December 2018, critically highlighting their structural diversity and pharmacological activities. Up to now, a total of 154 diterpenoids with diverse structures have been isolated and identified from Vitex plants. The authors also summarized the reported structure-activity relationships of those well explored Vitex diterpenoids. Finally, the authors discussed the challenges and potential applications of these diterpenoids in the future.
Collapse
Affiliation(s)
- Yanfei Ban
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Rui Jing
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yaoli Guo
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yiya Geng
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Chengjian Zheng
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
6
|
Chaudhry GES, Jan R, Zafar MN, Mohammad H, Muhammad TST. Vitex Rotundifolia Fractions Induced Apoptosis in Human Breast Cancer T-47D Cell Line via Activation of Extrinsic and Intrinsic Pathway. Asian Pac J Cancer Prev 2019; 20:3555-3562. [PMID: 31870094 PMCID: PMC7173364 DOI: 10.31557/apjcp.2019.20.12.3555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/29/2019] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Breast cancer is the most frequently diagnosed cancer worldwide. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the extract and fractions of Vitex rotundifolia (leaves) in breast cancer cell line, T-47D. METHODS The cytotoxicity activity was measured using MTS assay. The mode of cell death was analysed by early (phosphatidylserine externalization) and late apoptosis (DNA fragmentation). The caspases 8, 9, 3/7 and apoptotic proteins bax, bcl-2 study were done by western blot and ELISA method. RESULTS The methanol extract was found to inhibit 50% growth of T-47D cells at the concentration of 79.43µg/ml respectively after 72hr. From seven fractions, fraction F1, F2 and F3 produced cytotoxicity effects in T-47D cell line with IC50 (72hr) < 30µg/ml. The results obtained by Annexin V/PI apoptosis detection assay and TUNEL assay suggest that active fractions of Vitex rotundifolia induced early and late apoptosis (DNA fragmentation) in T-47D cell line. Moreover, western blot analysis and Caspase GloTM luminescent assay demonstrated that fractions F2 and F3 triggered apoptotic cell death via activation of caspases -8, -9 and -3/7 and up-regulation of Bax and down-regulation of Bcl-2 protein. Furthermore, chemical profiling confirms the presence of potential metabolites (vitexicarpin) in fractions of Vitex rotundifolia. CONCLUSION Thus, the present study suggests the remarkable potential of active metabolites in fractions of Vitex rotundifolia as future cancer therapeutic agent for the treatment of breast cancer. .
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia,
| | - Rehmat Jan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia,
| | | | - Habsah Mohammad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia,
| | | |
Collapse
|
7
|
Lin HW, Hsieh MJ, Yeh CB, Hsueh KC, Hsieh YH, Yang SF. Coronarin D induces apoptotic cell death through the JNK pathway in human hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2018; 33:946-954. [PMID: 29968959 DOI: 10.1002/tox.22579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Coronarin D, a diterpene derived from the rhizomes of Hedychium coronarium, has been used to treat inflammatory diseases. Coronarin D can exert strong anticancer effects through cell growth prevention and cell cycle arrest in many cancer cells. In this study, we investigated the molecular mechanism through which coronarin D suppresses cell proliferation and triggers cell death in human hepatocellular carcinoma (HCC) cells. Treatment of Huh7 and Sk-hep-1 cells with coronarin D resulted in a significantly increased loss of mitochondrial membrane potential, leading to the cleavage and activation of caspase-9, caspase-8, and caspase-3 and changes in Bax, Bcl-2, and Bcl-xL protein levels. Coronarin D significantly induced autophagy by increasing the expression of Beclin-1 and LC3-II and reducing the expression of p62. Moreover, Huh7 and Sk-hep-1 cells exposed to coronarin D had decreased expression of phosphorylated AKT, p38, and ERK and increased expression of phosphorylated JNK. Exposure of cells to the JNK-specific inhibitor SP600125 attenuated the apoptotic effects of coronarin D. Taken together, this is the first study to report that coronarin D may effectively inhibit cell growth through apoptosis. We have provided evidence indicating that coronarin D induces cell death through the upregulation of JNK mitogen-activated protein kinases in human HCC cells.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Chun Hsueh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of General Surgery, Department of Surgery, Tungs' Taichung MetroHarbour Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Song HM, Park GH, Park SB, Kim HS, Son HJ, Um Y, Jeong JB. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:191-207. [PMID: 29298515 DOI: 10.1142/s0192415x18500118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.
Collapse
Affiliation(s)
- Hun Min Song
- * Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
| | - Gwang Hun Park
- ‡ Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Su Bin Park
- * Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
| | - Hyun-Seok Kim
- § Department of Food Science & Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Ho-Jun Son
- ‡ Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Yurry Um
- ‡ Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Jin Boo Jeong
- * Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea.,† Insititute of Agricultural Science and Technology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
9
|
Kim YA, Kim DS, Oh KS, Seo Y. Isolation of a New Labdane-type Diterpene from Vitex rotundifolia. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.12.3840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Rani A, Sharma A. The genus Vitex: A review. Pharmacogn Rev 2013; 7:188-98. [PMID: 24347927 PMCID: PMC3841997 DOI: 10.4103/0973-7847.120522] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 08/28/2012] [Accepted: 10/25/2013] [Indexed: 11/30/2022] Open
Abstract
The review includes 161 references on the genus Vitex, and comprises ethnopharmacology, morphology and microscopy, phytoconstituents, pharmacological reports, clinical studies, and toxicology of the prominent species of Vitex. Essential oils, flavonoids, iridoid glycosides, diterpenoides and ligans constitute major classes of phytoconstituents of the genus. A few species of this genus have medicinal value, among these, leaves and fruits of V. agnus-castus Linn. (Verbenaceae) has been traditionally used in treatment of women complaints. V. agnus-castus has also been included in herbal remedies, which are in clinical use to regulate the menstrual cycle, reduce premenstrual symptom tension and anxiety, treat some menopausal symptoms as well as to treat hormonally induced acne. Despite a long tradition of use of some species, the genus has not been explored properly. In the concluding part, the future scope of Vitex species has been emphasized with a view to establish their multifarious biological activities and mode of action.
Collapse
Affiliation(s)
- Anita Rani
- Department of Pharmaceutical Chemistry, L. R. Institute of Pharmacy, Solan, Himachal Pradesh, India
| | - Anupam Sharma
- Department of Pharmacognosy, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
11
|
Vascular Protective Role of Vitexicarpin Isolated from Vitex rotundifolia in Human Umbilical Vein Endothelial Cells. Inflammation 2011; 35:584-93. [DOI: 10.1007/s10753-011-9349-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Li WX, Cui CB, Cai B, Yao XS. Labdane-type diterpenes as new cell cycle inhibitors and apoptosis inducers from Vitex trifolia L. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2005; 7:95-105. [PMID: 15621610 DOI: 10.1080/10286020310001617165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Five labdane-type diterpenes, vitexilactone (1), (rel 5S,6R,8R,9R,10S)-6-acetoxy-9-hydroxy-13(14)-labden-16,15-olide (2), rotundifuran (3), vitetrifolin D (4), and vitetrifolin E (5), have been isolated from Vitex trifolia L., a Chinese folk medicine used to treat cancers, as new cell cycle inhibitors and apoptosis inducers through a bioassay-guided separation procedure and were identified by spectroscopic methods. Compounds 1-5 dramatically induced apoptosis both on tsFT210 and K562 cells at higher concentrations while at lower concentrations they inhibited the cell cycle progression of both tsFT210 and K562 cells at the G0/G1 phase. MIC values for 1-5 for inducing apoptosis and concentration regions for 1-5 for inhibiting cell cycle both on tsFT210 and K562 cells have also been determined. Furthermore, the inhibitory effects of 1-5 on the proliferation of tsFT210 and K562 cells have been evaluated by MTT assay to obtain IC50 values to confirm that 1-5 are anticancer components of Vitex trifolia L., which exert their anti-proliferative effect on cancer cells through inducing apoptosis and inhibiting the cell cycle. The present results provide labdane-type diterpenes, 1-5, as a new class of cell cycle inhibitors and compounds 1, 2, 4, and 5 as new apoptosis inducers, which also explains, for the first time, the usage of Vitex trifolia L. by Chinese people to treat cancers.
Collapse
Affiliation(s)
- Wen-Xin Li
- Tianjin Institute for Biomedical Research (TIBiR), Tianjin 300384, China
| | | | | | | |
Collapse
|
13
|
Akihisa T, Yasukawa K, Tokuda H. Potentially Cancer Chemopreventive And Anti-Inflammatory Terpenoids From Natural Sources. BIOACTIVE NATURAL PRODUCTS (PART J) 2003. [DOI: 10.1016/s1572-5995(03)80005-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|