1
|
Duan Q, Wang M, Cui Z, Ma J. Saikosaponin D suppresses esophageal squamous cell carcinoma via the PI3K-AKT signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6059-6070. [PMID: 39638887 DOI: 10.1007/s00210-024-03676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Saikosaponin D is the saikosaponin with the highest biological activity in Bupleurum chinense DC, which has anti-tumor effects on a variety of human tumors. In this study, we aimed to explore the SSD-induced apoptosis mechanism in ESCC cells. We predicted the targets of SSD and ESCC through several databases and analyzed the intersecting targets to identify the connections and possible pathways between proteins. We evaluated the binding activity between proteins and SSD through molecular docking. Based on the network pharmacology results, different concentrations of SSD were used to treat Eca-109 alongside Te-10 cells. The CCK-8, colony formation, wound healing, transwell, apoptosis, and western blot assays were performed to verify the inhibitory SSD impact on Eca-109 and Te-10 cells. Network pharmacology predicted 186 potential targets of SSD, and 500 targets of ESCC, along with 31 common targets, 5 core protein targets, and 94 potential pathways. Depending on molecular docking findings, SSD was closely bound to five core targets. Cellular experiments showed that SSD suppressed the Eca-109 and Te-10 cell proliferation and metastasis and enhanced apoptosis via the PI3K-AKT signaling. This study suggests SSD inhibited Eca-109 and Te-10 cell proliferation and migration by inhibiting the PI3K-AKT pathway and promoting apoptosis.
Collapse
Affiliation(s)
- Qiong Duan
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Mingxiao Wang
- Sichuan Integrative Medicine Hospital, Chengdu, 610000, China
| | - Zhenting Cui
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Jianxin Ma
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China.
| |
Collapse
|
2
|
Jiang S, Li C, Liu D, Zeng F, Wei W, He T, Yang W. Role, mechanisms and effects of Radix Bupleuri in anti‑breast cancer (Review). Oncol Lett 2025; 29:166. [PMID: 39963320 PMCID: PMC11831725 DOI: 10.3892/ol.2025.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The prevalence of breast cancer among women has led to a growing need for innovative anti-breast cancer medications and an in-depth investigation into their molecular mechanisms of action, both of which are essential tactics in clinical intervention. In the clinical practice of Traditional Chinese Medicine, Radix Bupleuri and its active components have shown promise as potential anti-breast cancer agents due to their ability to target multiple pathways, exhibit synergistic effects and reduce toxicity. These compounds are considered to enhance the prognosis of patients with cancer, prolong survival and combat chemotherapy resistance. The present review aimed to delve into the anti-breast cancer properties of Radix Bupleuri and its active ingredients, highlighting their mechanisms, such as inhibition of cell proliferation, promotion of apoptosis, metastasis prevention, microenvironment improvement and synergy with certain chemotherapeutic agents. These findings may provide a scientific rationale for combining Radix Bupleuri and its active components with traditional chemotherapy agents for the management of breast cancer.
Collapse
Affiliation(s)
- Shiting Jiang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chengxia Li
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Wei
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao He
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Yang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
3
|
Gu S, Zheng Y, Chen C, Liu J, Wang Y, Wang J, Li Y. Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Int J Mol Med 2025; 55:37. [PMID: 39717942 PMCID: PMC11722148 DOI: 10.3892/ijmm.2024.5478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Bupleurum, a Traditional Chinese Medicine (TCM) herb, is widely used in China and other Asian countries to manage chronic liver inflammation and viral hepatitis. Saikosaponin D (SSD), a triterpenoid saponin extracted from Bupleurum, exhibits extensive pharmacological properties, including anti‑inflammatory, antioxidant, anti‑apoptotic, anti‑fibrotic and anti‑cancer effects, making it a therapeutic candidate for numerous diseases. Clarifying the targets and molecular mechanisms underlying TCM compounds is essential for scientifically validating TCM's therapeutic roles in disease prevention and treatment, as well as for identifying novel therapeutic targets and lead compounds. This analysis comprehensively examines SSD's mechanisms across various conditions, such as myocardial injury, pulmonary diseases, hepatic disorders, renal pathologies, neurological disorders, diabetes and cancer. In addition, challenges and potential solutions encountered in SSD research are addressed. SSD is posited as a promising monomer for multifaceted therapeutic applications and this article aims to enhance researchers' understanding of the current landscape of SSD studies, offering strategic insights to guide future investigations.
Collapse
Affiliation(s)
- Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yanping Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
4
|
Wang X, Tang X, Wang Y, Zhao S, Xu N, Wang H, Kuang M, Han S, Jiang Z, Zhang W. Plant-Derived Treatments for Different Types of Muscle Atrophy. Phytother Res 2025; 39:1107-1138. [PMID: 39743857 PMCID: PMC11832362 DOI: 10.1002/ptr.8420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
With the development of medicine and chemistry, an increasing number of plant-derived medicines have been shown to exert beneficial therapeutic on the treatment of various physical and psychological diseases. In particular, by using physical chemistry methods, we are able to examine the chemical components of plants and the effects of these substances on the human body. Muscle atrophy (MA) is characterized by decreased muscle mass and function, is caused by multiple factors and severely affects the quality of life of patients. The multifactorial and complex pathogenesis of MA hinders drug research and disease treatment. However, phytotherapy has achieved significant results in the treatment of MA. We searched PubMed and the Web of Science for articles related to plant-derived substances and muscle atrophy. After applying exclusion and inclusion criteria, 166 and 79 articles met the inclusion criteria, respectively. A total of 173 articles were included in the study after excluding duplicates. The important role of phytoactives such as curcumin, resveratrol, and ginsenosides in the treatment of MA (e.g., maintaining a positive nitrogen balance in muscles and exerting anti-inflammatory and antioxidant effects) has been extensively studied. Unfortunately, MA dose not have to a single cause, and each cause has its own unique mechanism of injury. This review focuses on the therapeutic mechanisms of active plant components in MA and provides insights into the personalized treatment of MA.
Collapse
Affiliation(s)
- Xingpeng Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xiaofu Tang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yunhui Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shengyin Zhao
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Ning Xu
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Haoyu Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mingjie Kuang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shijie Han
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Zhensong Jiang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Wen Zhang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
5
|
Ning N, Li X, Nan Y, Chen G, Huang S, Du Y, Gu Q, Li W, Yuan L. Molecular mechanism of Saikosaponin-d in the treatment of gastric cancer based on network pharmacology and in vitro experimental verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8943-8959. [PMID: 38864908 DOI: 10.1007/s00210-024-03214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The study aimed to utilize network pharmacology combined with cell experiments to research the mechanism of action of Saikosaponin-d in the treatment of gastric cancer. Drug target genes were obtained from the PubChem database and the Swiss Target Prediction database. Additionally, target genes for gastric cancer were obtained from the GEO database and the Gene Cards database. The core targets were then identified and further analyzed through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GESA enrichment. The clinical relevance of the core targets was assessed using the GEPIA and HPA databases. Molecular docking of drug monomers and core target proteins was performed using Auto Duck Tools and Pymol software. Finally, in vitro cellular experiments including cell viability, apoptosis, cell scratch, transwell invasion, transwell migration, qRT-PCR, and Western blot were conducted to verify these findings of network pharmacology. The network pharmacology analysis predicted that the drug monomers interacted with 54 disease targets. Based on clinical relevance analysis, six core targets were selected: VEGFA, IL2, CASP3, BCL2L1, MMP2, and MMP1. Molecular docking results showed binding activity between the Saikosaponin-d monomer and these core targets. Saikosaponin-d could inhibit gastric cancer cell proliferation, induce apoptosis, and inhibit cell migration and invasion.
Collapse
Affiliation(s)
- Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Nan
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, TCM Hospital of Ningxia Medical University, Wuzhong, 751100, China.
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
6
|
Ran S, Peng R, Guo Q, Cui J, Chen G, Wang Z. Bupleurum in Treatment of Depression Disorder: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:512. [PMID: 38675471 PMCID: PMC11054835 DOI: 10.3390/ph17040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of depression has been steadily rising in recent years, making it one of the most prevalent mental illnesses. As the pursuit of novel antidepressant drugs captivates the pharmaceutical field, the therapeutic efficacy of Traditional Chinese Medicine (TCM) has been widely explored. Chaihu (Bupleurum) has been traditionally used for liver conditions such as hepatitis, liver inflammation, liver fibrosis, and liver cancer. It is believed to have hepatoprotective effects, promoting liver cell regeneration and protecting against liver damage. In addition, Bupleurum has also been used as a Jie Yu (depression-relieving) medicine in China, Japan, Republic of Korea, and other Asian countries for centuries. This review article aims to summarize the research conducted on the antidepressant properties and mechanisms of Bupleurum, as well as discuss the potential of TCM formulas containing Bupleurum. This review highlights various antidepressant ingredients isolated from Bupleurum, including saikosaponin A, saikosaponin D, rutin, puerarin, and quercetin, each with distinct mechanisms of action. Additionally, Chinese herb prescriptions and extracts containing Bupleurum, such as Chaihu Shugansan, Xiaoyaosan, and Sinisan, are also included due to their demonstrated antidepressant effects. This review reveals that these Bupleurum compounds exhibit antidepressant effects through the regulation of neurotransmitter mechanisms (such as 5-HT and DA), the NMDA (N-methyl-D-aspartate) system, brain-derived neurotrophic factor (BDNF), and other intracellular signaling pathways. Collectively, this comprehensive review provides insights into the multiple applications of Bupleurum in the treatment of depression and highlights its potential as an alternative or complementary approach to traditional therapies. However, it is essential to consider the potential adverse effects and clinical restrictions of Bupleurum despite its promising potential. Further research is needed to elucidate its specific mechanisms of action and evaluate its effectiveness in human subjects.
Collapse
Affiliation(s)
| | | | | | | | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (S.R.); (R.P.); (Q.G.); (J.C.)
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (S.R.); (R.P.); (Q.G.); (J.C.)
| |
Collapse
|
7
|
Zhu Z, Li C, Gu X, Wang X, Zhang G, Fan M, Zhao Y, Liu X, Zhang X. Paeoniflorin alleviated muscle atrophy in cancer cachexia through inhibiting TLR4/NF-κB signaling and activating AKT/mTOR signaling. Toxicol Appl Pharmacol 2024; 484:116846. [PMID: 38331105 DOI: 10.1016/j.taap.2024.116846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Cancer cachexia is a progressive wasting syndrome, which is mainly characterized by systemic inflammatory response, weight loss, muscle atrophy, and fat loss. Paeoniflorin (Pae) is a natural compound extracted from the dried root of Paeonia lactiflora Pallas, which is featured in anti-inflammatory, antioxidant, and immunoregulatory pharmacological activities. While, the effects of Pae on cancer cachexia had not been reported before. In the present study, the effects of Pae on muscle atrophy in cancer cachexia were observed both in vitro and in vivo using C2C12 myotube atrophy cell model and C26 tumor-bearing cancer cachexia mice model. In the in vitro study, Pae could alleviate myotubes atrophy induced by conditioned medium of C26 colon cancer cells or LLC Lewis lung cancer cells by decreasing the expression of Atrogin-1 and inhibited the decrease of MHC and MyoD. In the in vivo study, Pae ameliorated weight loss and improved the decrease in cross-sectional area of muscle fibers and the impairment of muscle function in C26 tumor-bearing mice. The inhibition of TLR4/NF-κB pathway and the activation of AKT/mTOR pathway was observed both in C2C12 myotubes and C26 tumor-bearing mice treated by Pae, which might be the main basis of its ameliorating effects on muscle atrophy. In addition, Pae could inhibit the release of IL-6 from C26 tumor cells, which might also contribute to its ameliorating effects on muscle atrophy. Overall, Pae might be a promising candidate for the therapy of cancer cachexia.
Collapse
Affiliation(s)
- Zixia Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Cong Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xiaoting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201003, China.
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
8
|
Pan X, Zhang G, Wei K, Gu X, Dan J, Zhao Y, Liu X, Cheng C, Zhang X. Carnosol analogue WK-63 alleviated cancer cachexia by inhibiting NF-κB and activating AKT pathways in muscle while inhibiting NF-κB and AMPK pathways in adipocyte. Toxicol Appl Pharmacol 2023; 479:116729. [PMID: 37863360 DOI: 10.1016/j.taap.2023.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Cancer cachexia is a systemic metabolic disorder syndrome characterized by severe wasting of muscle and adipose tissues while is lack of effective therapeutic approaches. Carnosol (CS) was found in our previous study to exhibit ameliorating effects on cancer cachexia. In the present study, we designed and synthesized 49 CS analogues by structural modification of CS. Results of activity screening revealed that, among the analogues, WK-63 exhibited better effects than CS in ameliorating atrophy of C2C12 myotubes induced by conditioned medium of C26 tumor cells. WK-63 could also dose-dependently alleviate adipocyte lipolysis of mature 3 T3-L1 cells induced by C26 tumor cell conditioned medium. WK-63 alleviated myotube atrophy by inhibiting Nuclear Factor kappa-B (NF-κB) and activating the Protein Kinase B (AKT) signaling pathway, and also alleviated fat loss by inhibiting NF-κB and Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathways. Results of pharmacokinetic (PK) assay showed that, compared with other analogues, WK-63 exhibited longer half-life (T1/2) and mean residence time (MRTs), as well as a larger concentration curve area (AUC0-t). These findings suggested that WK-63 might exert optimal effects in vivo. In the C26 tumor-bearing mice model, administration of WK-63 ameliorated the body weight loss and also improved the weight loss of epididymal adipose tissue. WK-63 is expected to be a novel therapeutic option for the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Xiaojuan Pan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Kun Wei
- College of Chemical Engineering, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Jiahuan Dan
- College of Chemical Engineering, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201003, China.
| | - Chunru Cheng
- College of Chemical Engineering, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China.
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|