1
|
Świt P, Pollap A, Orzeł J. Spectroscopic Determination of Acetylcholine (ACh): A Representative Review. Top Curr Chem (Cham) 2023; 381:16. [PMID: 37169979 PMCID: PMC10175388 DOI: 10.1007/s41061-023-00426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023]
Abstract
Acetylcholine (ACh) is one of the most crucial neurotransmitters of the cholinergic system found in vertebrates and invertebrates and is responsible for many processes in living organisms. Disturbances in ACh transmission are closely related to dementia in Alzheimer's and Parkinson's disease. ACh in biological samples is most often determined using chromatographic techniques, radioenzymatic assays, enzyme-linked immunosorbent assay (ELISA), or potentiometric methods. An alternative way to detect and determine acetylcholine is applying spectroscopic techniques, due to low limits of detection and quantification, which is not possible with the methods mentioned above. In this review article, we described a detailed overview of different spectroscopic methods used to determine ACh with a collection of validation parameters as a perspective tool for routine analysis, especially in basic research on animal models on central nervous system. In addition, there is a discussion of examples of other biological materials from clinical and preclinical studies to give the whole spectrum of spectroscopic methods application. Descriptions of the developed chemical sensors, as well as the use of flow technology, were also presented. It is worth emphasizing the inclusion in the article of multi-component analysis referring to other neurotransmitters, as well as the description of the tested biological samples and extraction procedures. The motivation to use spectroscopic techniques to conduct this type of analysis and future perspectives in this field are briefly discussed.
Collapse
Affiliation(s)
- Paweł Świt
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna Street, 40-006, Katowice, Poland.
| | | | - Joanna Orzeł
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna Street, 40-006, Katowice, Poland
| |
Collapse
|
2
|
Lamy E, Pilyser L, Paquet C, Bouaziz-Amar E, Grassin-Delyle S. High-sensitivity quantification of acetylcholine and choline in human cerebrospinal fluid with a validated LC-MS/MS method. Talanta 2021; 224:121881. [PMID: 33379090 DOI: 10.1016/j.talanta.2020.121881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 10/23/2022]
Abstract
Acetylcholine is the neurotransmitter of the parasympathetic nervous system, synthesized from choline and involved in several neurodegenerative diseases. Exploration of cholinergic neurotransmission in the human central nervous system is limited by the lack of a sensitive and specific method for the determination of acetylcholine and choline expression. We developed an hydrophilic interaction liquid chromatography - mass spectrometry method for the quantification of both molecules in human cerebrospinal fluid samples. An extensive selectivity study towards endogenous interfering compounds, in particular γ-butyrobetain, was performed and the method was validated according to the European Medicine Agency and Food and Drug Administration guidelines for the validation of bioanalytical methods. The performance of the method was excellent with a lower limit of quantification at 5 ng/L (34.2 pmol/L) for acetylcholine and 5 μg/L for choline, a precision in the range 1.3-11.9% and an accuracy between 85.2 and 113.1%. This suitability of the method for the quantification of acetylcholine and choline in clinical samples was demonstrated with the analysis of patient cerebrospinal fluid samples. Altogether, this validated method allows the simultaneous quantitative analysis of acetylcholine and choline in human cerebrospinal fluid with high sensitivity and selectivity. It will allow to better characterize the cholinergic neurotransmission in human pathologies and to study the effects of drugs acting on this system.
Collapse
Affiliation(s)
- Elodie Lamy
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | - Léa Pilyser
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | - Claire Paquet
- APHP GHU Nord Lariboisière Fernand-Widal, Centre de Neurologie Cognitive, Paris, France; INSERM U1144, Université de Paris, Paris, France
| | - Elodie Bouaziz-Amar
- INSERM U1144, Université de Paris, Paris, France; Département de Biochimie et Biologie moléculaire - GHU AP-HP.Nord - Université de Paris, Hôpital Lariboisière, Paris, France
| | - Stanislas Grassin-Delyle
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France; Hôpital Foch, Département des maladies des voies respiratoires, Suresnes, France.
| |
Collapse
|
3
|
Chan CK, Chan KKJ, Pavlović NM, Chan W. Liquid chromatography-tandem mass spectrometry analysis of aristolochic acids in soil samples collected from Serbia: Link to Balkan endemic nephropathy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8547. [PMID: 31392776 DOI: 10.1002/rcm.8547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Over the past six decades, residents of farming villages in multiple countries of the Balkan peninsula have been suffering from a unique type of chronic renal disease, Balkan endemic nephropathy (BEN). It was speculated that environmental pollution by aristolochic acids (AAs) produced naturally by Aristolochia clematitis L., a weed that grows in the area, was causing the disease. However, the human exposure pathway to this class of phytotoxin remains obscure. Knowledge of the sink and stability of AAs in the environment would assist in the formulation of policy reducing exposure risk. METHODS Using our newly developed liquid chromatography/tandem mass spectrometry method of high sensitivity and selectivity, we analysed over 130 soil samples collected from cultivation fields in southern Serbia for the presence of AAs. The environmental stability of AAs was also investigated by incubating soil samples spiked with AAs at various temperatures. RESULTS The analysis detected AA-I in over two-fifths of the tested samples at sub-μg/kg to μg/kg levels, with higher concentrations observed in more acidic farmland soil. Furthermore, analysis of soil samples incubated at various temperatures revealed half-lives of over 2 months, indicating that AAs are relatively resistant to degradation. CONCLUSIONS Cultivation soil in southern Serbia is being extensively contaminated with AAs released from the decomposition of A. clematitis weeds. Since AAs are resistant to degradation, it is possible that AAs could have been taken up by root absorption and transported to the edible part of food crops. Prolonged exposure to AA-contaminated food grown from polluted soil could be one of the main aetiological mechanisms of BEN observed in the area.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - K K Jason Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
4
|
Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 2015; 1395:79-87. [DOI: 10.1016/j.chroma.2015.03.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
|
5
|
Kailasa SK, Wu HF. Recent Advances in Mass Spectrometry for the Identification of Neuro-chemicals and their Metabolites in Biofluids. Curr Neuropharmacol 2013; 11:436-64. [PMID: 24381533 PMCID: PMC3744906 DOI: 10.2174/1570159x11311040007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 11/22/2022] Open
Abstract
Recently, mass spectrometric related techniques have been widely applied for the identification and quantification of neurochemicals and their metabolites in biofluids. This article presents an overview of mass spectrometric techniques applied in the detection of neurological substances and their metabolites from biological samples. In addition, the advances of chromatographic methods (LC, GC and CE) coupled with mass spectrometric techniques for analysis of neurochemicals in pharmaceutical and biological samples are also discussed.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat – 395007, India
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 800, Kaohsiung, Taiwan
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
6
|
Li J, von Pföstl V, Zaldivar D, Zhang X, Logothetis N, Rauch A. Measuring multiple neurochemicals and related metabolites in blood and brain of the rhesus monkey by using dual microdialysis sampling and capillary hydrophilic interaction chromatography-mass spectrometry. Anal Bioanal Chem 2011; 402:2545-54. [PMID: 21956265 DOI: 10.1007/s00216-011-5427-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/25/2011] [Accepted: 09/17/2011] [Indexed: 01/15/2023]
Abstract
In vivo measurement of multiple functionally related neurochemicals and metabolites (NMs) is highly interesting but remains challenging in the field of basic neuroscience and clinical research. We present here an analytical method for determining five functionally and metabolically related polar substances, including acetylcholine (quaternary ammonium), lactate and pyruvate (organic acids), as well as glutamine and glutamate (amino acids). These NMs are acquired from samples of the brain and the blood of non-human primates in parallel by dual microdialysis, and subsequently analyzed by a direct capillary hydrophilic interaction chromatography (HILIC)-mass spectrometry (MS) based method. To obtain high sensitivity in electrospray ionization (ESI)-MS, lactate and pyruvate were detected in negative ionization mode whereas the other NMs were detected in positive ionization mode during each HILIC-MS run. The method was validated for linearity, the limits of detection and quantification, precision, accuracy, stability and matrix effect. The detection limit of acetylcholine, lactate, pyruvate, glutamine, and glutamate was 150 pM, 3 μM, 2 μM, 5 nM, and 50 nM, respectively. This allowed us to quantitatively and simultaneously measure the concentrations of all the substances from the acquired dialysates. The concentration ratios of both lactate/pyruvate and glutamine/glutamate were found to be higher in the brain compared to blood (p < 0.05). The reliable and simultaneous quantification of these five NMs from brain and blood samples allows us to investigate their relative distribution in the brain and blood, and most importantly paves the way for future non-invasive studies of the functional and metabolic relation of these substances to each other.
Collapse
Affiliation(s)
- Juan Li
- Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Nirogi R, Mudigonda K, Kandikere V, Ponnamaneni R. Quantification of acetylcholine, an essential neurotransmitter, in brain microdialysis samples by liquid chromatography mass spectrometry. Biomed Chromatogr 2010; 24:39-48. [PMID: 19877295 DOI: 10.1002/bmc.1347] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemical neurotransmission has been the subject of intensive investigations in recent years. Acetylcholine is an essential neurotransmitter in the central nervous system as it has an effect on alertness, memory and learning. Enzymatic hydrolysis of acetylcholine in the synaptic cleft is fast and quickly metabolizes to choline and acetate by acetylcholinesterase. Hence the concentration in the extracellular fluid of the brain is low (0.1-6 nm). Techniques such as microdialysis are routinely employed to measure acetylcholine levels in living brain systems and the microdialysis sample volumes are usually less than 50 microL. In order to develop medicine for the diseases associated with cognitive dysfunction like mild cognitive impairment, Alzheimer's disease, schizophrenia and Parkinson's disease, or to study the mechanism of the illness, it is important to measure the concentration of acetylcholine in the extracellular fluid of the brain. Recently considerable attention has been focused on the development of chromatographic-mass spectrometric techniques to provide more sensitive and accurate quantification of acetylcholine collected from in-vivo brain microdialysis experiments. This review will provide a brief overview of acetylcholine biosynthesis, microdialysis technique and liquid chromatography mass spectrometry, which is being used to quantitate extracellular levels of acetylcholine.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Discovery Research, Suven Life Sciences Ltd, Serene Chambers, Road -5, Avenue -7, Banjara Hills, Hyderabad 500034, India.
| | | | | | | |
Collapse
|
8
|
Bioanalytical hydrophilic interaction chromatography: recent challenges, solutions and applications. Bioanalysis 2009; 1:239-53. [DOI: 10.4155/bio.09.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hydrophilic interaction chromatography (HILIC) has, in recent years, been shown to be an important supplement to reversed-phase liquid chromatography for polar analytes. HILIC, in conjunction with tandem mass spectrometry (MS/MS), has been steadily gaining acceptance in the analysis of polar compounds from complex biological matrices. This hyphenated technique offers the advantages of improved sensitivity by employing high organic content in the mobile phase, shortened sample preparation time with direct injection of the organic-solvent extracts of biological samples and the potential for ultra-fast analysis because of low-column backpressure. This article reviews recent challenges presented by HILIC, advancements in the better understanding of retention characteristics of analytes with different mobile- and stationary-phase compositions and solutions to ion suppression and interference problems encountered in HILIC–MS/MS assays. Applications of HILIC–MS/MS are summarized, including those for pharmacokinetic studies, metabolic studies, therapeutic drug monitoring and clinical diagnostics.
Collapse
|
9
|
Quantification of peramivir (a novel anti-influenza drug) in human plasma by hydrophilic interaction chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:933-8. [DOI: 10.1016/j.jchromb.2009.02.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/28/2009] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
|