1
|
Müller J, Boubaker G, Müller N, Uldry AC, Braga-Lagache S, Heller M, Hemphill A. Investigating Antiprotozoal Chemotherapies with Novel Proteomic Tools-Chances and Limitations: A Critical Review. Int J Mol Sci 2024; 25:6903. [PMID: 39000012 PMCID: PMC11241152 DOI: 10.3390/ijms25136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Identification of drug targets and biochemical investigations on mechanisms of action are major issues in modern drug development. The present article is a critical review of the classical "one drug"-"one target" paradigm. In fact, novel methods for target deconvolution and for investigation of resistant strains based on protein mass spectrometry have shown that multiple gene products and adaptation mechanisms are involved in the responses of pathogens to xenobiotics rather than one single gene or gene product. Resistance to drugs may be linked to differential expression of other proteins than those interacting with the drug in protein binding studies and result in complex cell physiological adaptation. Consequently, the unraveling of mechanisms of action needs approaches beyond proteomics. This review is focused on protozoan pathogens. The conclusions can, however, be extended to chemotherapies against other pathogens or cancer.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Cho YT, Su H, Wu WJ, Wu DC, Hou MF, Kuo CH, Shiea J. Biomarker Characterization by MALDI-TOF/MS. Adv Clin Chem 2015; 69:209-54. [PMID: 25934363 DOI: 10.1016/bs.acc.2015.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometric techniques frequently used in clinical diagnosis, such as gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, ambient ionization mass spectrometry, and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF/MS), are discussed. Due to its ability to rapidly detect large biomolecules in trace amounts, MALDI-TOF/MS is an ideal tool for characterizing disease biomarkers in biologic samples. Clinical applications of MS for the identification and characterization of microorganisms, DNA fragments, tissues, and biofluids are introduced. Approaches for using MALDI-TOF/MS to detect various disease biomarkers including peptides, proteins, and lipids in biological fluids are further discussed. Finally, various sample pretreatment methods which improve the detection efficiency of disease biomarkers are introduced.
Collapse
Affiliation(s)
- Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Kaneko N, Yoshimori T, Yamamoto R, Capon DJ, Shimada T, Sato TA, Tanaka K. Multi Epitope-Targeting Immunoprecipitation Using F(ab′) Fragments with High Affinity and Specificity for the Enhanced Detection of a Peptide with Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry. Anal Chem 2013; 85:3152-9. [DOI: 10.1021/ac303344h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naoki Kaneko
- Koichi Tanaka Laboratory of
Advanced Science and Technology, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Takayuki Yoshimori
- Koichi Tanaka Laboratory of
Advanced Science and Technology, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Rie Yamamoto
- Koichi Tanaka Laboratory of
Advanced Science and Technology, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Daniel J. Capon
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, California
94118, United States
| | - Takashi Shimada
- Life Science Research Center, Shimadzu Corporation, Kanda-Nishikicho 1, Chiyoda-ku,
Tokyo 101-8448, Japan
| | - Taka-Aki Sato
- Koichi Tanaka Laboratory of
Advanced Science and Technology, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
- Life Science Research Center, Shimadzu Corporation, Kanda-Nishikicho 1, Chiyoda-ku,
Tokyo 101-8448, Japan
| | - Koichi Tanaka
- Koichi Tanaka Laboratory of
Advanced Science and Technology, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|