1
|
Wu W, Zhang D, He Y, Cao J, Li X. Identification of the age of white tea using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) coupled with multivariate analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9215. [PMID: 34687096 DOI: 10.1002/rcm.9215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/20/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE In recent years, white tea has become increasingly popular. Some merchants confuse the age of white tea and sell poor-quality products for profit. Therefore, it is necessary to provide technical support for product authentication and valorization in white tea of different marked ages. METHODS Volatile organic compounds (VOCs) were detected by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) and identified as volatile fingerprints. PTR-TOF-MS combined with multivariate analysis was found to identify white tea of four different marked ages (1, 3, 5, and 8 years) for authentication. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used as classification models to identify key volatile metabolites. RESULTS The OPLS-DA model achieved the best results (96.67%, 96.67%, 96.67%, and 96.67% in the training set and 96.00%, 96.00%, 100%, and 100% in the prediction set for 1-year, 3-year, 5-year, and 8-year tea samples, respectively), showing that PTR-TOF-MS with the OPLS-DA model could successfully be used in the identification of white tea with different marked ages. Out of the 60 identified VOCs, 26 volatile materials were closely correlated with tea age and were used as markers to discriminate white tea of different ages. CONCLUSIONS PTR-TOF-MS coupled with multivariate analysis could be applied for quality evaluation of tea products of different ages and provided a feasible technical support for product authentication and valorization in white tea of different marked ages.
Collapse
Affiliation(s)
- Weihua Wu
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, China
- Minjiang Teachers College, Fuzhou, Fujian, China
| | - Dandan Zhang
- Fujian Business University, Fuzhou, Fujian, China
| | - Ye He
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Cao
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Judicial Expertise Center, Fujian Police College, Fuzhou, China
- Fuzhou University Postdoctoral Research Station of Chemical Engineering and Technology, Fuzhou University, Fuzhou, China
| | - Xiaojing Li
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, China
- Technology Center of Fuzhou Customs, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Guan Y, Zhang M, Gaikwad M, Voss H, Fazel R, Ansari S, Shen H, Wang J, Schlüter H. An Integrated Strategy Reveals Complex Glycosylation of Erythropoietin Using Mass Spectrometry. J Proteome Res 2021; 20:3654-3663. [PMID: 34110173 PMCID: PMC9472269 DOI: 10.1021/acs.jproteome.1c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The characterization of therapeutic glycoproteins is challenging
due to the structural heterogeneity of the therapeutic protein glycosylation.
This study presents an in-depth analytical strategy for glycosylation
of first-generation erythropoietin (epoetin beta), including a developed
mass spectrometric workflow for N-glycan analysis, bottom-up mass
spectrometric methods for site-specific N-glycosylation, and a LC-MS
approach for O-glycan identification. Permethylated N-glycans, peptides,
and enriched glycopeptides of erythropoietin were analyzed by nanoLC-MS/MS,
and de-N-glycosylated erythropoietin was measured by LC-MS, enabling
the qualitative and quantitative analysis of glycosylation and different
glycan modifications (e.g., phosphorylation and O-acetylation). The
newly developed Python scripts enabled the identification of 140 N-glycan
compositions (237 N-glycan structures) from erythropoietin, especially
including 8 phosphorylated N-glycan species. The site-specificity
of N-glycans was revealed at the glycopeptide level by pGlyco software
using different proteases. In total, 114 N-glycan compositions were
identified from glycopeptide analysis. Moreover, LC-MS analysis of
de-N-glycosylated erythropoietin species identified two O-glycan compositions
based on the mass shifts between non-O-glycosylated and O-glycosylated
species. Finally, this integrated strategy was proved to realize the
in-depth glycosylation analysis of a therapeutic glycoprotein to understand
its pharmacological properties and improving the manufacturing processes.
Collapse
Affiliation(s)
- Yudong Guan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Zhang
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Manasi Gaikwad
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hannah Voss
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ramin Fazel
- Reasearch and Innovation Center, Livogen Pharmed Co., Tehran 1417755358, Iran
| | - Samira Ansari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj 3165933155, Iran
| | - Huali Shen
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jigang Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
3
|
Zhang D, Wu W, Qiu X, Li X, Zhao F, Ye N. Rapid and direct identification of the origin of white tea with proton transfer reaction time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8830. [PMID: 32415693 DOI: 10.1002/rcm.8830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/18/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE White tea has become very popular in recent years, but there has been no scientific identification of white tea from different origins. For product authentication and valorization, every kind of white tea must be marked with an indication of its origin. METHODS Volatile profiles of white tea leaf samples from their main origins in China (Fuding City, Zhenghe City and Jianyang City) were analyzed using proton transfer reaction time-of-flight mass spectrometry (PTR-TOFMS). Tentative identifications of the volatile organic compounds (VOCs) were obtained by PTR-TOFMS of the headspace. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed to evaluate the differences among the various origins. RESULTS Teas from different origins were shown to have characteristic VOCs and profiles. Thus, white teas from different origins could be separated by characterizing the volatile emissions from the dry tea leaves. The ability of the two classification models to use the volatile fingerprints in origin discrimination was investigated. CONCLUSIONS Two classification models (PCA and OPLS-DA) were applied to the PTR-TOFMS data obtained from the VOCs of various white teas. The classification models were shown to be useful in identifying the origin of white tea samples, providing a reference for white tea identification.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Fujian Business University, Fuzhou, Fujian, 350016, China
| | - Weihua Wu
- Minjiang Teachers College, Fuzhou, Fujian, 350018, China
| | - Xiaohong Qiu
- Athena Institute of Holistic Wellness, Nanping, Fujian, 354399, China
| | - Xiaojing Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Feng Zhao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
4
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 2020; 17:275-296. [PMID: 32406805 DOI: 10.1080/14789450.2020.1769479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Protein glycosylation influences characteristics such as folding, stability, protein interactions, and solubility. Therefore, glycan moieties of therapeutic proteins and proteins that are likely associated with disease pathogenesis should be analyzed in-depth, including glycan heterogeneity and modification sites. Recent advances in analytical methods and instrumentation have enabled comprehensive characterization of highly complex glycosylated proteins. AREA COVERED The following aspects should be considered when analyzing glycosylated proteins: sample preparation, chromatographic separation, mass spectrometry (MS) and fragmentation methods, and bioinformatics, such as software solutions for data analyses. Notably, analysis of glycoproteins with heavily sialylated glycans or multiple glycosylation sites requires special considerations. Here, we discuss recent methodological advances in MS that provide detailed characterization of heterogeneous glycoproteins. EXPERT OPINION As characterization of complex glycosylated proteins is still analytically challenging, the function or pathophysiological significance of these proteins is not fully understood. To reproducibly produce desired forms of therapeutic glycoproteins or to fully elucidate disease-specific patterns of protein glycosylation, a highly reproducible and robust analytical platform(s) should be established. In addition to advances in MS instrumentation, optimization of analytical and bioinformatics methods and utilization of glycoprotein/glycopeptide standards is desirable. Ultimately, we envision that an automated high-throughput MS analysis will provide additional power to clinical studies and precision medicine.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University , Toyoake, Japan
| | - Matthew B Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan.,Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
6
|
Mancera-Arteu M, Giménez E, Balmaña M, Barrabés S, Albiol-Quer M, Fort E, Peracaula R, Sanz-Nebot V. Multivariate data analysis for the detection of human alpha-acid glycoprotein aberrant glycosylation in pancreatic ductal adenocarcinoma. J Proteomics 2019; 195:76-87. [PMID: 30641231 DOI: 10.1016/j.jprot.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Abstract
Relative quantification of human alpha-acid glycoprotein (hAGP) glycan isomers using [12C6]/[13C6]-aniline in combination with multivariate data analysis is proposed as an efficient method for the identification of pancreatic ductal adenocarcinoma (PDAC) glycan biomarkers in serum samples. Intact and desialylated glycans from hAGP, purified from serum samples of patients with PDAC and chronic pancreatitis (ChrP), were labeled with aniline and analyzed by μZIC-HILIC-MS. Afterwards, partial least squares discriminant analysis (PLS-DA) was applied to the relative areas obtained for all glycan isomers in the different samples: pathological (ChrP or PDAC) versus healthy samples. Seven intact glycan isomers with α2-6 linked sialic acids, five of them also fucosylated, were the most meaningful to distinguish between PDAC and ChrP patients. The desialylated glycan isomers also identified by PLS-DA as potential biomarker candidates confirmed that antenna but also core fucosylation could be involved in PDAC. The analysis of intact and desialylated glycan isomers in combination with the multivariate data analysis revealed that the triantennary glycan with two fucoses of hAGP could have in the future a relevant role in the differentiation of patients with PDAC from those with ChrP. SIGNIFICANCE: Multivariate data analysis is currently being used in many omics fields for biomarker discovery. However, to date, no glycomics studies have applied chemometric tools combined with mass spectrometry in a preclinical research. In this work, this methodology has been used to identify altered glycosylation of human alpha-acid glycoprotein in pancreatic ductal adenocarcinoma (PDAC). The obtained results reveal that the triantennary glycan with two fucoses could have a great biomarker potential as it was relevant to differentiate PDAC and chronic pancreatitis (ChrP) patients.
Collapse
Affiliation(s)
- Montserrat Mancera-Arteu
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain.
| | - Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Glycobiology in Cancer Group, i3S - Instituto de Investigação e Inovação em Saúde, Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Sílvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Biomedical Research Institute of Girona (IdIBGi), Salt, Spain
| | - Maite Albiol-Quer
- Department of Surgery, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Esther Fort
- Department of Gastroenterology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Biomedical Research Institute of Girona (IdIBGi), Salt, Spain
| | - Victòria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Hu M, Lan Y, Lu A, Ma X, Zhang L. Glycan-based biomarkers for diagnosis of cancers and other diseases: Past, present, and future. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:1-24. [PMID: 30905444 DOI: 10.1016/bs.pmbts.2018.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are essential biomolecules in regulating human physiology and pathology ranging from signal transduction to microbial infections. Developing complex human diseases, such as cancer, diabetes, and cardiovascular diseases, are a combination of genetic and environmental factors. Genetics dominates embryonic development and the passing of genes to the next generation whereas the information in glycans reflects the impact of internal and external environmental factors, such as diseases, lifestyle, and social factors, on a person's health and disease. The reason behind this is that glycans are not directly encoded in a genetic template. Instead, they are assembled dynamically by hundreds of enzymes organized in more than 10 complex biosynthetic pathways. Any environmental changes affecting enzymatic activities or the availability of high-energy monosaccharide donors in a specific location will disturb the final structure of glycans. The glycan structure-dependent biological activities subsequently enable or disable gene expressions, which partially explain that it is difficult to pinpoint specific genetic defects to aging-associated diseases. Glycan-based biomarkers are currently used for diagnosis of diabetes, cancers, and other complex diseases. We will recapitulate the discovery of glucose, glycated proteins, glycan-, and glycoprotein-based biomarkers followed by summarizing clinically used glycan/glycoprotein-based biomarkers. The potential serum/plasma-derived N- and O-linked glycans as biomarkers will also be discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Alexander Lu
- Program in Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Xuexiao Ma
- Department of Spine Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Simple and Robust N -Glycan Analysis Based on Improved 2-Aminobenzoic Acid Labeling for Recombinant Therapeutic Glycoproteins. J Pharm Sci 2018; 107:1831-1841. [DOI: 10.1016/j.xphs.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 11/24/2022]
|
9
|
Sensitive and comprehensive analysis of O-glycosylation in biotherapeutics: a case study of novel erythropoiesis stimulating protein. Bioanalysis 2017; 9:1373-1383. [PMID: 28920453 DOI: 10.4155/bio-2017-0085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Glycosylation of recombinant human erythropoietins (rhEPOs) is significantly associated with drug's quality and potency. Thus, comprehensive characterization of glycosylation is vital to assess the biotherapeutic quality and establish the equivalency of biosimilar rhEPOs. However, current glycan analysis mainly focuses on the N-glycans due to the absence of analytical tools to liberate O-glycans with high sensitivity. We developed selective and sensitive method to profile native O-glycans on rhEPOs. RESULTS O-glycosylation on rhEPO including O-acetylation on a sialic acid was comprehensively characterized. Details such as O-glycan structure and O-acetyl-modification site were obtained from tandem MS. CONCLUSION This method may be applied to QC and batch analysis of not only rhEPOs but also other biotherapeutics bearing multiple O-glycosylations.
Collapse
|
10
|
Grampp G, Ramanan S. The Diversity of Biosimilar Design and Development: Implications for Policies and Stakeholders. BioDrugs 2016; 29:365-72. [PMID: 26581551 PMCID: PMC4684584 DOI: 10.1007/s40259-015-0147-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Biosimilars are required to be similar or highly similar in structure to their biologic reference product but are neither expected nor required to contain identical active substances. For example, glycosylated biosimilars approved to date demonstrate quantitative and qualitative structural differences from their reference product and exemplify the latitude of variations permitted for biosimilars. Although differences between a candidate biosimilar and its reference product will be evaluated for differential clinical effects during biosimilarity assessment, it is unlikely that potential differences between any two indirectly related biosimilars will be formally evaluated. Furthermore, biosimilar pathways permit variations in pharmaceutical attributes, clinical development approaches, and regulatory outcomes, resulting in further diversity of attributes among approved biosimilars. Because biosimilars may vary across the ranges of structural and functional acceptance criteria, they should not be treated like multisource, generic drugs.
Collapse
Affiliation(s)
| | - Sundar Ramanan
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
11
|
Barroso A, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Classification of congenital disorders of glycosylation based on analysis of transferrin glycopeptides by capillary liquid chromatography-mass spectrometry. Talanta 2016; 160:614-623. [PMID: 27591658 DOI: 10.1016/j.talanta.2016.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 01/30/2023]
Abstract
In this work, we describe a multivariate data analysis approach for data exploration and classification of the complex and large data sets generated to study the alteration of human transferrin (Tf) N-glycopeptides in patients with congenital disorders of glycosylation (CDG). Tf from healthy individuals and two types of CDG patients (CDG-I and CDG-II) is purified by immunoextraction from serum samples before trypsin digestion and separation by capillary liquid chromatography mass spectrometry (CapLC-MS). Following a targeted data analysis approach, partial least squares discriminant analysis (PLS-DA) is applied to the relative abundance of Tf glycopeptide glycoforms obtained after integration of the extracted ion chromatograms of the different samples. The performance of PLS-DA for classification of the different samples and for providing a novel insight into Tf glycopeptide glycoforms alteration in CDGs is demonstrated. Only six out of fourteen of the detected glycoforms are enough for an accurate classification. This small glycoform set may be considered a sensitive and specific novel biomarker panel for CDGs.
Collapse
Affiliation(s)
- Albert Barroso
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - José Barbosa
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Miura Y, Hashii N, Tsumoto H, Takakura D, Ohta Y, Abe Y, Arai Y, Kawasaki N, Hirose N, Endo T. Change in N-Glycosylation of Plasma Proteins in Japanese Semisupercentenarians. PLoS One 2015; 10:e0142645. [PMID: 26559536 PMCID: PMC4641608 DOI: 10.1371/journal.pone.0142645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/23/2015] [Indexed: 12/26/2022] Open
Abstract
An N-glycomic analysis of plasma proteins was performed in Japanese semisupercentenarians (SSCs) (mean 106.7 years), aged controls (mean 71.6 years), and young controls (mean 30.2 years) by liquid chromatography/mass spectrometry (LC/MS) using a graphitized carbon column. Characteristic N-glycans in SSCs were discriminated using a multivariate analysis; orthogonal projections to latent structures (O-PLS). The results obtained showed that multi-branched and highly sialylated N-glycans as well as agalacto- and/or bisecting N-glycans were increased in SSCs, while biantennary N-glycans were decreased. Since multi-branched and highly sialylated N-glycans have been implicated in anti-inflammatory activities, these changes may play a role in the enhanced chronic inflammation observed in SSCs. The levels of inflammatory proteins, such as CRP, adiponectin, IL-6, and TNF-α, were elevated in SSCs. These results suggested that responses to inflammation may play an important role in extreme longevity and healthy aging in humans. This is the first study to show that the N-glycans of plasma proteins were associated with extreme longevity and healthy aging in humans.
Collapse
Affiliation(s)
- Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Daisuke Takakura
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Yuki Ohta
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Yukiko Abe
- Center for Supercentenarian Research, Keio University School of Medicine, Tokyo, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Research, Keio University School of Medicine, Tokyo, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Research, Keio University School of Medicine, Tokyo, Japan
| | - Tamao Endo
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- * E-mail:
| | | |
Collapse
|
13
|
Geuijen KPM, Halim LA, Schellekens H, Schasfoort RB, Wijffels RH, Eppink MH. Label-Free Glycoprofiling with Multiplex Surface Plasmon Resonance: A Tool To Quantify Sialylation of Erythropoietin. Anal Chem 2015; 87:8115-22. [DOI: 10.1021/acs.analchem.5b00870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Karin P. M. Geuijen
- Downstream
Processing, Synthon Biopharmaceuticals BV, P.O. Box 7071, 6503 GN Nijmegen, The Netherlands
- Bioprocess
Engineering, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Liem A. Halim
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Huub Schellekens
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Richard B. Schasfoort
- IBIS Technologies, Pantheon
5, 7521 PR Enschede, The Netherlands
- Medical
Cell Biophysics Group, MIRA Institute, Faculty of Science and Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - René H. Wijffels
- Bioprocess
Engineering, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- University of Nordland, Faculty of Biosciences and
Aquaculture, N-8049, Bodø, Norway
| | - Michel H. Eppink
- Downstream
Processing, Synthon Biopharmaceuticals BV, P.O. Box 7071, 6503 GN Nijmegen, The Netherlands
- Bioprocess
Engineering, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|