1
|
Henderson A, Heaney LM, Rankin-Turner S. Ambient ionisation mass spectrometry for drug and toxin analysis: A review of the recent literature. Drug Test Anal 2024; 16:1323-1344. [PMID: 38326879 DOI: 10.1002/dta.3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
Ambient ionisation mass spectrometry (AIMS) is a form of mass spectrometry whereby analyte ionisation occurs outside of a vacuum source under ambient conditions. This enables the direct analysis of samples in their native state, with little or no sample preparation and without chromatographic separation. The removal of these steps facilitates a much faster analytical process, enabling the direct analysis of samples within minutes if not seconds. Consequently, AIMS has gained rapid popularity across a diverse range of applications, in particular the analysis of drugs and toxins. Numerous fields rely upon mass spectrometry for the detection and identification of drugs, including clinical diagnostics, forensic chemistry, and food safety. However, all of these fields are hindered by the time-consuming and laboratory-confined nature of traditional techniques. As such, the potential for AIMS to resolve these challenges has resulted in a growing interest in ambient ionisation for drug and toxin analysis. Since the early 2000s, forensic science, diagnostic testing, anti-doping, pharmaceuticals, environmental analysis and food safety have all seen a marked increase in AIMS applications, foreshadowing a new future for drug testing. In this review, some of the most promising AIMS techniques for drug analysis will be discussed, alongside different applications of AIMS published over a 5-year period, to provide a summary of the recent research activity for ambient ionisation for drug and toxin analysis.
Collapse
Affiliation(s)
- Alisha Henderson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephanie Rankin-Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Lee CW, Su H, Hsu YW, Su LZ, Wu YH, Hou CY, Shih SY, Shiea J. Rapid Characterization of Undeclared Pharmaceuticals in Herbal Preparations by Ambient Ionization Mass Spectrometry for Emergency Care. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:960-971. [PMID: 38616559 PMCID: PMC11066970 DOI: 10.1021/jasms.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
In Asia, some herbal preparations have been found to be adulterated with undeclared synthetic medicines to increase their therapeutic efficiency. Many of these adulterants were found to be toxic when overdosed and have been documented to bring about severe, even life-threatening acute poisoning events. The objective of this study is to develop a rapid and sensitive ambient ionization mass spectrometric platform to characterize the undeclared toxic adulterated ingredients in herbal preparations. Several common adulterants were spiked into different herbal preparations and human sera to simulate the clinical conditions of acute poisoning. They were then sampled with a metallic probe and analyzed by the thermal desorption-electrospray ionization mass spectrometry. The experimental parameters including sensitivity, specificity, accuracy, and turnaround time were prudently optimized in this study. Since tedious and time-consuming pretreatment of the sample is unnecessary, the toxic adulterants could be characterized within 60 s. The results can help emergency physicians to make clinical judgments and prescribe appropriate antidotes or supportive treatment in a time-sensitive manner.
Collapse
Affiliation(s)
- Chi-Wei Lee
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Rapid
Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Research
Center for Environmental Medicine, Kaohsiung
Medical University, Kaohsiung 80756, Taiwan, ROC
| | - Hung Su
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
| | - Yi-Wen Hsu
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
| | - Lin-Zhen Su
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
| | - Yen-Hung Wu
- Department
of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, ROC
| | - Chia-Yi Hou
- Department
of Clinical Pathology, Chi-Mei Medical Center, Liouying 73659, Taiwan, ROC
| | - Shu-Yu Shih
- Department
of Emergency Medicine, Chi-Mei Medical Center, Liouying 73659, Taiwan, ROC
| | - Jentaie Shiea
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80756, Taiwan, ROC
- Rapid
Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Research
Center for Environmental Medicine, Kaohsiung
Medical University, Kaohsiung 80756, Taiwan, ROC
| |
Collapse
|
3
|
Shang Y, Meng X, Liu J, Song N, Zheng H, Han C, Ma Q. Applications of mass spectrometry in cosmetic analysis: An overview. J Chromatogr A 2023; 1705:464175. [PMID: 37406420 DOI: 10.1016/j.chroma.2023.464175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Mass spectrometry (MS) is a crucial tool in cosmetic analysis. It is widely used for ingredient screening, quality control, risk monitoring, authenticity verification, and efficacy evaluation. However, due to the diversity of cosmetic products and the rapid development of MS-based analytical methods, the relevant literature needs a more systematic collation of information on this subject to unravel the true potential of MS in cosmetic analysis. Herein, an overview of the role of MS in cosmetic analysis over the past two decades is presented. The currently used sample preparation methods, ionization techniques, and types of mass analyzers are demonstrated in detail. In addition, a brief perspective on the future development of MS for cosmetic analysis is provided.
Collapse
Affiliation(s)
- Yuhan Shang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xianshuang Meng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Juan Liu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Naining Song
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyan Zheng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Chao Han
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
4
|
Hsu YM, Wu CF, Huang MZ, Shiea J, Pan CH, Liu CC, Chen CC, Wang YH, Cheng CM, Wu MT. Avatar-like body imaging of dermal exposure to melamine in factory workers analyzed by ambient mass spectrometry. CHEMOSPHERE 2022; 303:134896. [PMID: 35561770 DOI: 10.1016/j.chemosphere.2022.134896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Ambient mass spectrometry thermal desorption-electrospray ionization/mass spectrometry (TD-ESI/MS) can rapidly identify chemicals without pretreatment of biological samples. This study used a rapid semi-quantitative TD-ESI/MS screening technique for the probe skin sampling of melamine workers occupationally exposed to different ambient melamine concentrations to create avatar-like body images, which were then used to study temporal and dynamic changes in nephrotoxic melamine exposure. We enrolled four voluntary melamine workers from one factory, each from one of four worksites. Melamine exposure was highest in manufacturing and molding, followed by grinding and polishing, packing, and administration, the lowest. Skin samples were collected Friday (end-of-shift) and Monday (pre-shift). Early morning one-spot urine samples were also collected right after skin sampling. 2198 probe skin samples were collected and subjected to semi-quantitative TD-ESI/MS analyses of melamine chemical within 40 h. After normalization, converted body image scores revealed exposure to be highest in the manufacturing worker on Friday and lowest in the administrative worker on Monday. The absolute differences (Friday minus Monday) of normalized body image scores were all significantly positive in each individual worker and across all four workers (permutation test, all p-values < 0.002). The slope estimates of the linear regression line between body image scores and urinary melamine levels were 0.81 (p-value = 0.008). We concluded that this fast and non-invasive technique can potentially be used to study temporal and dynamic changes in exposure to occupational hazards. A future study of developing an automatic and reproducible TD-ESI/MS sampling platform is needed.
Collapse
Affiliation(s)
- Yu-Ming Hsu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; International Master Program of Translational Medicine, National United University, Miaoli, Taiwan.
| | - Min-Zong Huang
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Chih-Hung Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, Executive Yuan, Taipei, Taiwan.
| | - Chia-Chu Liu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan.
| | - Chu-Chih Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan.
| | - Yin-Han Wang
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan.
| | - Ching-Mei Cheng
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan.
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; PhD Program of Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Su H, Jiang ZH, Chiou SF, Shiea J, Wu DC, Tseng SP, Jain SH, Chang CY, Lu PL. Rapid Characterization of Bacterial Lipids with Ambient Ionization Mass Spectrometry for Species Differentiation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092772. [PMID: 35566120 PMCID: PMC9104219 DOI: 10.3390/molecules27092772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Ambient ionization mass spectrometry (AIMS) is both labor and time saving and has been proven to be useful for the rapid delineation of trace organic and biological compounds with minimal sample pretreatment. Herein, an analytical platform of probe sampling combined with a thermal desorption–electrospray ionization/mass spectrometry (TD-ESI/MS) and multivariate statistical analysis was developed to rapidly differentiate bacterial species based on the differences in their lipid profiles. For comparison, protein fingerprinting was also performed with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) to distinguish these bacterial species. Ten bacterial species, including five Gram-negative and five Gram-positive bacteria, were cultured, and the lipids in the colonies were characterized with TD-ESI/MS. As sample pretreatment was unnecessary, the analysis of the lipids in a bacterial colony growing on a Petri dish was completed within 1 min. The TD-ESI/MS results were further performed by principal component analysis (PCA) and hierarchical cluster analysis (HCA) to assist the classification of the bacteria, and a low relative standard deviation (5.2%) of the total ion current was obtained from repeated analyses of the lipids in a single bacterial colony. The PCA and HCA results indicated that different bacterial species were successfully distinguished by the differences in their lipid profiles as validated by the differences in their protein profiles recorded from the MALDI-TOF analysis. In addition, real-time monitoring of the changes in the specific lipids of a colony with growth time was also achieved with probe sampling and TD-ESI/MS. The developed analytical platform is promising as a useful diagnostic tool by which to rapidly distinguish bacterial species in clinical practice.
Collapse
Affiliation(s)
- Hung Su
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Zong-Han Jiang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Shu-Fen Chiou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (J.S.); (P.-L.L.)
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan;
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Shu-Huei Jain
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan;
| | - Chung-Yu Chang
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Po-Liang Lu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan;
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Correspondence: (J.S.); (P.-L.L.)
| |
Collapse
|
6
|
Cho YT, Su H, Wu CY, Huang TL, Jeng J, Huang MZ, Wu DC, Shiea J. Molecular Mapping of Sebaceous Squalene by Ambient Mass Spectrometry. Anal Chem 2021; 93:16608-16617. [PMID: 34860507 DOI: 10.1021/acs.analchem.1c03983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Squalene (SQ), a highly unsaturated sebaceous lipid, plays an important role in protecting human skin. To better understand the role of SQ in clinical medicine, an efficient analytical approach is needed to comprehensively study the distribution of SQ on different parts of the skin. In this study, sebaceous lipids were collected from different epidermal areas of a volunteer with sampling probes. Thermal desorption-electrospray ionization/mass spectrometry (TD-ESI/MS) was then used to characterize the lipid species on the probes, and each TD-ESI/MS analysis was completed within a few seconds without any sample pretreatment. The molecular mapping of epidermal squalene on whole-body skin was rendered by scaling the peak area of the extracted ion current (EIC) of SQ based on a temperature color gradient, where colors were assigned to the 1357 sampling locations on a 3D map of the volunteer. The image showed a higher SQ distribution on the face than any other area of the body, indicating the role of SQ in protecting facial skin. The results were in agreement with previous studies using SQ as a marker to explore sebaceous activity. The novelty and significance of this work are concluded as two points: (1) direct and rapid detection of all major classes of sebaceous lipids, including the unsaturated hydrocarbons (SQ) and nonpolar lipids (e.g., cholesterol). The results are unique compared to other conventional and ambient ionization mass spectrometry methods and (2) this is the first study to analyze SQ distribution on the whole-body skin by a high-throughput approach.
Collapse
Affiliation(s)
- Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, No. 15, Lane 420, Dachang 2nd Road, Sanmin District, Kaohsiung 807634, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lienhai Road, Gushan District, Kaohsiung 804201, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.,Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801735, Taiwan.,Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Kaohsiung Medical Center and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan.,Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Jingyueh Jeng
- Department of Medicinal Chemistry, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Min-Zong Huang
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lienhai Road, Gushan District, Kaohsiung 804201, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.,Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lienhai Road, Gushan District, Kaohsiung 804201, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
7
|
Su H, Huang YJ, Huang MZ, Lee YT, Chen SC, Hung CH, Kuo CH, Wu MT, Shiea J. Using ambient mass spectrometry to explore the origins of phthalate contamination in a mass spectrometry laboratory. Anal Chim Acta 2020; 1105:128-138. [DOI: 10.1016/j.aca.2020.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|
8
|
Chiang CH, Lee HH, Chen BH, Lin YC, Chao YY, Huang YL. Using ambient mass spectrometry and LC–MS/MS for the rapid detection and identification of multiple illicit street drugs. J Food Drug Anal 2019; 27:439-450. [PMID: 30987715 PMCID: PMC9296207 DOI: 10.1016/j.jfda.2018.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/03/2022] Open
Abstract
In this study the recently developed technique of thermal desorption electrospray ionization/mass spectrometry (TD–ESI/MS) was applied to the rapid analysis of multiple controlled substances. With the reallocation of mass spectral resources [from a standard ESI source coupled with liquid chromatography (LC) to an ambient TD–ESI source], this direct-analysis technique allows the identification of a wider range of illicit drugs through a dual-working mode (pretreatment-free qualitative screening/conventional quantitative confirmation). Through 60-MRM (multiple reaction monitoring) analysis—in which the MS/MS process was programmed to sequentially scan 60 precursor ion/product ion transitions and, thereby, identify 30 compounds (two precursor/product ion transitions per compound)—of a four-component (drug) standard, the signal intensity ratios of each drug transition were comparable with those obtained through 8-MRM analysis, demonstrating the selectivity of TD–ESI/MS for the detection of multiple drugs. The consecutive analyses of tablets containing different active components occurred with no cross-contamination or interference from sample to sample, demonstrating the reliability of the TD–ESI/MS technique for rapid sampling (two samples min−1). The active ingredients in seized drug materials could be detected even when they represented less than 2 mg g−1 of the total sample weight, demonstrating the sensitivity of TD–ESI/MS. Combining the ability to rapidly identify multiple drugs with the “plug-and-play” design of the interchangeable ion source, TD–ESI/MS has great potential for use as a pretreatment-free qualitative screening tool for laboratories currently using LC–MS/MS techniques to analyze illicit drugs.
Collapse
|
9
|
Hou Z, Xiong X, Fang X, Huang G. Enhanced Desorption Electrospray Ionization Mass Spectrometry via Synchronizing Ion Generation and Ion Injection. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:368-375. [PMID: 30402785 DOI: 10.1007/s13361-018-2082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
A modified version of desorption electrospray ionization mass spectrometry was developed for (i) better utilization of analyte ions and (ii) larger sampling area via synchronization the pulsed nebulizer gas with ion injection. To synchronize the sheath gas, gas flow was paused for 50 ms within each cycle, leading to solvent accumulation at the end of emitter tip. That solvent accumulation enlarged the desorption areas. As a result, the amount of analytes increased. Thus, the improved signal intensity (~ 2-5-folds for various substrates) was benefit from both better analyte ion utilization and larger desorption areas. Finally, the enhanced signal intensity was confirmed with both garlic homogenate and brain homogenate. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Zhuanghao Hou
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, People's Republic of China
| | - Xingchuang Xiong
- National Institute of Metrology, Beijing, 100013, People's Republic of China
| | - Xiang Fang
- National Institute of Metrology, Beijing, 100013, People's Republic of China.
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, People's Republic of China.
- National Synchrotron Radiation Laboratory, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
10
|
Chao YY, Chen YL, Lin HY, Huang YL. Rapid screening of basic colorants in processed vegetables through mass spectrometry using an interchangeable thermal desorption electrospray ionization source. Anal Chim Acta 2018; 1010:44-53. [DOI: 10.1016/j.aca.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 11/15/2022]
|
11
|
Chao YY, Chen YL, Chen WC, Chen BH, Huang YL. Rapid detection of illegal colorants on traditional Chinese pastries through mass spectrometry with an interchangeable thermal desorption electrospray ionization source. Food Chem 2018; 252:189-197. [DOI: 10.1016/j.foodchem.2017.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/06/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
|
12
|
Ouyang J, An D, Chen T, Lin Z. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:280-286. [PMID: 29028383 DOI: 10.1177/1469066717712462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.
Collapse
Affiliation(s)
- Jie Ouyang
- Department of Chemistry, Xiamen University, Xiamen, China
| | - Dongli An
- Department of Chemistry, Xiamen University, Xiamen, China
| | - Tengteng Chen
- Department of Chemistry, Xiamen University, Xiamen, China
| | - Zhiwei Lin
- Department of Chemistry, Xiamen University, Xiamen, China
| |
Collapse
|