1
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|
2
|
Henriksen NNSE, Lindqvist LL, Wibowo M, Sonnenschein EC, Bentzon-Tilia M, Gram L. Role is in the eye of the beholder-the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteraceae. FEMS Microbiol Rev 2022; 46:fuac007. [PMID: 35099011 PMCID: PMC9075582 DOI: 10.1093/femsre/fuac007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA). TDA is a broad-spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio. The production of TDA is governed by the mode of growth and influenced by the availability of nutrient sources. The antibacterial effect of TDA is caused by disruption of the proton motive force of target microorganisms and, potentially, by its iron-chelating properties. TDA also acts as a signaling molecule, affecting gene expression in other bacteria, and altering phenotypic traits such as motility, biofilm formation, and antibiotic production in the producer. In microbial communities, TDA-producing bacteria cause a reduction of the relative abundance of closely related species and some fast-growing heterotrophic bacteria. Here, we summarize the current understanding of the chemical ecology of TDA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of TDA.
Collapse
Affiliation(s)
- Nathalie N S E Henriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Laura L Lindqvist
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Radman S, Čižmek L, Babić S, Cikoš AM, Čož-Rakovac R, Jokić S, Jerković I. Bioprospecting of Less-Polar Fractions of Ericaria crinita and Ericaria amentacea: Developmental Toxicity and Antioxidant Activity. Mar Drugs 2022; 20:57. [PMID: 35049912 PMCID: PMC8781977 DOI: 10.3390/md20010057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
Ericaria crinita and Ericaria amentacea from the Adriatic Sea (Croatia) were investigated with respect to the presence of less-polar compounds for the first time after fractionation by solid-phase extraction (SPE). The composition of less-polar fractions of freeze-dried E. crinita (FdEc) and E. amentacea (FdEa) were analyzed by high-performance liquid chromatography-high-resolution mass spectrometry with electrospray ionization (UHPLC-ESI-HRMS). The major identified compounds were: amides of higher aliphatic acids (palmitoleamide, linoleamide, palmitamide, oleamide and erucamide) and related compounds, carotenoid (fucoxanthin), chlorophyll derivatives (pheophytin a and b and their derivatives) and higher terpenes (loliolide, isoamijiol with its oxidation product), β-stigmasterol and (3β,6α)-14-methylergosta-8,24(28)-diene-3,6-diol). The toxic effects observed on the less-polar fractions obtained from Ericaria species on zebrafish Danio rerio embryos could be associated with the high abundance of all five detected amides. The antioxidant activity of the fractions was evaluated by means of five independent assays, including the reduction of the radical cation (ABTS), the oxygen radical absorbance capacity (ORAC), ferric-reducing antioxidant power (FRAP), the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay and the Folin-Ciocalteu method. A higher antioxidant activity of E. amentacea in comparison to that of the E. crinita fractions was found with IC50 concentrations of 0.072 and 1.177 mg/mL, respectively. The correlation between the activity and the chemical composition revealed that the synergistic effect of different compounds impacted their antioxidant response.
Collapse
Affiliation(s)
- Sanja Radman
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.Č.); (S.B.); (R.Č.-R.)
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.Č.); (S.B.); (R.Č.-R.)
| | - Ana-Marija Cikoš
- Department of Process Engineering, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.-M.C.); (S.J.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.Č.); (S.B.); (R.Č.-R.)
| | - Stela Jokić
- Department of Process Engineering, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (A.-M.C.); (S.J.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| |
Collapse
|
4
|
Ruocco N, Esposito R, Bertolino M, Zazo G, Sonnessa M, Andreani F, Coppola D, Giordano D, Nuzzo G, Lauritano C, Fontana A, Ianora A, Verde C, Costantini M. A Metataxonomic Approach Reveals Diversified Bacterial Communities in Antarctic Sponges. Mar Drugs 2021; 19:173. [PMID: 33810171 PMCID: PMC8004616 DOI: 10.3390/md19030173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Marine sponges commonly host a repertoire of bacterial-associated organisms, which significantly contribute to their health and survival by producing several anti-predatory molecules. Many of these compounds are produced by sponge-associated bacteria and represent an incredible source of novel bioactive metabolites with biotechnological relevance. Although most investigations are focused on tropical and temperate species, to date, few studies have described the composition of microbiota hosted by Antarctic sponges and the secondary metabolites that they produce. The investigation was conducted on four sponges collected from two different sites in the framework of the XXXIV Italian National Antarctic Research Program (PNRA) in November-December 2018. Collected species were characterized as Mycale (Oxymycale) acerata, Haliclona (Rhizoniera) dancoi, Hemigellius pilosus and Microxina sarai by morphological analysis of spicules and amplification of four molecular markers. Metataxonomic analysis of these four Antarctic sponges revealed a considerable abundance of Amplicon Sequence Variants (ASVs) belonging to the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Verrucomicrobia. In particular, M. (Oxymycale) acerata, displayed several genera of great interest, such as Endozoicomonas, Rubritalea, Ulvibacter, Fulvivirga and Colwellia. On the other hand, the sponges H. pilosus and H. (Rhizoniera) dancoi hosted bacteria belonging to the genera Pseudhongella, Roseobacter and Bdellovibrio, whereas M. sarai was the sole species showing some strains affiliated to the genus Polaribacter. Considering that most of the bacteria identified in the present study are known to produce valuable secondary metabolites, the four Antarctic sponges could be proposed as potential tools for the discovery of novel pharmacologically active compounds.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Roberta Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Marco Bertolino
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Gianluca Zazo
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Michele Sonnessa
- Bio-Fab Research srl, Via Mario Beltrami, 5, 00135 Roma, Italy; (M.S.); (F.A.)
| | - Federico Andreani
- Bio-Fab Research srl, Via Mario Beltrami, 5, 00135 Roma, Italy; (M.S.); (F.A.)
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Daniela Giordano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Genoveffa Nuzzo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy; (G.N.); (A.F.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Angelo Fontana
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy; (G.N.); (A.F.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Cinzia Verde
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
5
|
de Felício R, Ballone P, Bazzano CF, Alves LFG, Sigrist R, Infante GP, Niero H, Rodrigues-Costa F, Fernandes AZN, Tonon LAC, Paradela LS, Costa RKE, Dias SMG, Dessen A, Telles GP, da Silva MAC, Lima AODS, Trivella DBB. Chemical Elicitors Induce Rare Bioactive Secondary Metabolites in Deep-Sea Bacteria under Laboratory Conditions. Metabolites 2021; 11:metabo11020107. [PMID: 33673148 PMCID: PMC7918856 DOI: 10.3390/metabo11020107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.
Collapse
Affiliation(s)
- Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Patricia Ballone
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Cristina Freitas Bazzano
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Computing (IC), University of Campinas (UNICAMP), Campinas 13083-852, SP, Brazil;
| | - Luiz F. G. Alves
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Renata Sigrist
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Gina Polo Infante
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Henrique Niero
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Fernanda Rodrigues-Costa
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Arthur Zanetti Nunes Fernandes
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Luciane A. C. Tonon
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Luciana S. Paradela
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Renna Karoline Eloi Costa
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, F-38000 Grenoble, France
| | - Guilherme P. Telles
- Institute of Computing (IC), University of Campinas (UNICAMP), Campinas 13083-852, SP, Brazil;
| | - Marcus Adonai Castro da Silva
- School of Sea, Science and Technology, University of Vale do Itajaí (Univali), Itajaí 88302-202, SC, Brazil; (M.A.C.d.S.); (A.O.d.S.L.)
| | - Andre Oliveira de Souza Lima
- School of Sea, Science and Technology, University of Vale do Itajaí (Univali), Itajaí 88302-202, SC, Brazil; (M.A.C.d.S.); (A.O.d.S.L.)
| | - Daniela Barretto Barbosa Trivella
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Correspondence: ; Tel.: +55-19-3517-5055
| |
Collapse
|
6
|
Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd. Molecules 2018; 23:molecules23102497. [PMID: 30274255 PMCID: PMC6222922 DOI: 10.3390/molecules23102497] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022] Open
Abstract
Antioxidant phytochemicals play a key role in oxidative stress control and in the prevention of related disorders, such as premature aging, degenerative diseases, diabetes, and cancer. The aim of this study was to investigate the potential antioxidant activity and the phytochemical profile of Senecio clivicolus Wedd., a perennial shrub, belonging to the Asteraceae family. Despite the wide interest of this family, this specie has not been investigated yet. S. clivicolus aerial parts were extracted with 96% ethanol. Then, the ethanol extract was fractionated by liquid/liquid extraction using an increasing solvents polarity. Total polyphenol and terpenoid contents were measured. Moreover, the antioxidant activity was evaluated by six different complementary in vitro assays. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different tests. The sample showing the highest RACI was subjected to characterization and quantitation of its phenolic composition using LC-MS/MS analysis. The ethyl acetate fraction, investigated by LC-MS/MS analysis, showed 30 compounds, most of them are chlorogenic acid and flavonoid derivatives. To the best of our knowledge, this is the first report about the evaluation of antioxidant activity and phytochemical profile of S. clivicolus, underlying the importance of this species as a source of health-promoting phytochemicals.
Collapse
|