1
|
Ilchenko O, Pilhun Y, Kutsyk A. Towards Raman imaging of centimeter scale tissue areas for real-time opto-molecular visualization of tissue boundaries for clinical applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:143. [PMID: 35585059 PMCID: PMC9117314 DOI: 10.1038/s41377-022-00828-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Raman spectroscopy combined with augmented reality and mixed reality to reconstruct molecular information of tissue surface.
Collapse
Affiliation(s)
- Oleksii Ilchenko
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs, Lyngby, 2800, Denmark.
- Lightnovo ApS, Birkerød, 3460, Denmark.
| | - Yurii Pilhun
- Lightnovo ApS, Birkerød, 3460, Denmark
- Taras Shevchenko National University of Kyiv, Department of Quantum Radio Physics, Kyiv, Ukraine
| | - Andrii Kutsyk
- Lightnovo ApS, Birkerød, 3460, Denmark
- Taras Shevchenko National University of Kyiv, Department of Quantum Radio Physics, Kyiv, Ukraine
- Technical University of Denmark, Department of Energy Conversion and Storage, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
2
|
Kalaiarasan K, Prathap L, Ayyadurai M, Subhashini P, Tamilselvi T, Avudaiappan T, Infant Raj I, Alemayehu Mamo S, Mezni A. Clinical Application of Augmented Reality in Computerized Skull Base Surgery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1335820. [PMID: 35600956 PMCID: PMC9117015 DOI: 10.1155/2022/1335820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022]
Abstract
Cranial base tactics comprise the regulation of tiny and complicated structures in the domains of otology, rhinology, neurosurgery, and maxillofacial medical procedure. Basic nerves and veins are in the nearness of these buildings. Increased the truth is a coming innovation that may reform the cerebral basis approach by supplying vital physical and navigational facts brought together in a solitary presentation. In any case, the awareness and acknowledgment of prospective results of expanding reality frameworks in the cerebral base region are really poor. This article targets examining the handiness of expanded reality frameworks in cranial foundation medical procedures and emphasizes the obstacles that present innovation encounters and their prospective adjustments. A specialized perspective on distinct strategies used being produced of an improved realty framework is furthermore offered. The newest item offers an expansion in interest in expanded reality frameworks that may motivate more secure and practical procedures. In any case, a couple of concerns have to be cared to before that can be for the vast part fused into normal practice.
Collapse
Affiliation(s)
- K. Kalaiarasan
- Department of Information Technology, M. Kumarasamy College of Engineering, Karur, India
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - M. Ayyadurai
- SG, Institute of ECE, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu 600077, India
| | - P. Subhashini
- Department of Computer Science and Engineering, J.N.N Institute of Engineering, Kannigaipair, Tamil Nadu 601102, India
| | - T. Tamilselvi
- Department of Computer Science and Engineering, Panimalar Institute of Technology, Varadarajapuram, Tamil Nadu 600123, India
| | - T. Avudaiappan
- Computer Science and Engineering, K. Ramakrishnan College of Technology, Trichy 621112, India
| | - I. Infant Raj
- Department of Computer Science and Engineering, K. Ramakrishnan College of Engineering, Trichy, India
| | - Samson Alemayehu Mamo
- Department of Electrical and Computer Engineering, Faculty of Electrical and Biomedical Engineering, Institute of Technology, Hawassa University, Awasa, Ethiopia
| | - Amine Mezni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Yang W, Knorr F, Latka I, Vogt M, Hofmann GO, Popp J, Schie IW. Real-time molecular imaging of near-surface tissue using Raman spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2022; 11:90. [PMID: 35396506 PMCID: PMC8993924 DOI: 10.1038/s41377-022-00773-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 05/08/2023]
Abstract
The steady progress in medical diagnosis and treatment of diseases largely hinges on the steady development and improvement of modern imaging modalities. Raman spectroscopy has attracted increasing attention for clinical applications as it is label-free, non-invasive, and delivers molecular fingerprinting information of a sample. In combination with fiber optic probes, it also allows easy access to different body parts of a patient. However, image acquisition with fiber optic probes is currently not possible. Here, we introduce a fiber optic probe-based Raman imaging system for the real-time molecular virtual reality data visualization of chemical boundaries on a computer screen and the physical world. The approach is developed around a computer vision-based positional tracking system in conjunction with photometric stereo and augmented and mixed chemical reality, enabling molecular imaging and direct visualization of molecular boundaries of three-dimensional surfaces. The proposed approach achieves a spatial resolution of 0.5 mm in the transverse plane and a topology resolution of 0.6 mm, with a spectral sampling frequency of 10 Hz, and can be used to image large tissue areas in a few minutes, making it highly suitable for clinical tissue-boundary demarcation. A variety of applications on biological samples, i.e., distribution of pharmaceutical compounds, brain-tumor phantom, and various types of sarcoma have been characterized, showing that the system enables rapid and intuitive assessment of molecular boundaries.
Collapse
Affiliation(s)
- Wei Yang
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Florian Knorr
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Ines Latka
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Matthias Vogt
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Gunther O Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Iwan W Schie
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany.
- Department of Medical Engineering and Biotechnology, University of Applied Sciences - Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany.
| |
Collapse
|
4
|
Video-based augmented reality combining CT-scan and instrument position data to microscope view in middle ear surgery. Sci Rep 2020; 10:6767. [PMID: 32317726 PMCID: PMC7174368 DOI: 10.1038/s41598-020-63839-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/26/2020] [Indexed: 11/27/2022] Open
Abstract
The aim of the study was to develop and assess the performance of a video-based augmented reality system, combining preoperative computed tomography (CT) and real-time microscopic video, as the first crucial step to keyhole middle ear procedures through a tympanic membrane puncture. Six different artificial human temporal bones were included in this prospective study. Six stainless steel fiducial markers were glued on the periphery of the eardrum, and a high-resolution CT-scan of the temporal bone was obtained. Virtual endoscopy of the middle ear based on this CT-scan was conducted on Osirix software. Virtual endoscopy image was registered to the microscope-based video of the intact tympanic membrane based on fiducial markers and a homography transformation was applied during microscope movements. These movements were tracked using Speeded-Up Robust Features (SURF) method. Simultaneously, a micro-surgical instrument was identified and tracked using a Kalman filter. The 3D position of the instrument was extracted by solving a three-point perspective framework. For evaluation, the instrument was introduced through the tympanic membrane and ink droplets were injected on three middle ear structures. An average initial registration accuracy of 0.21 ± 0.10 mm (n = 3) was achieved with a slow propagation error during tracking (0.04 ± 0.07 mm). The estimated surgical instrument tip position error was 0.33 ± 0.22 mm. The target structures’ localization accuracy was 0.52 ± 0.15 mm. The submillimetric accuracy of our system without tracker is compatible with ear surgery.
Collapse
|
5
|
Hussain R, Lalande A, Guigou C, Bozorg Grayeli A. Contribution of Augmented Reality to Minimally Invasive Computer-Assisted Cranial Base Surgery. IEEE J Biomed Health Inform 2019; 24:2093-2106. [DOI: 10.1109/jbhi.2019.2954003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: A review of current methods. Hepatobiliary Pancreat Dis Int 2018; 17:101-112. [PMID: 29567047 DOI: 10.1016/j.hbpd.2018.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/16/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Augmented reality (AR) technology is used to reconstruct three-dimensional (3D) images of hepatic and biliary structures from computed tomography and magnetic resonance imaging data, and to superimpose the virtual images onto a view of the surgical field. In liver surgery, these superimposed virtual images help the surgeon to visualize intrahepatic structures and therefore, to operate precisely and to improve clinical outcomes. DATA SOURCES The keywords "augmented reality", "liver", "laparoscopic" and "hepatectomy" were used for searching publications in the PubMed database. The primary source of literatures was from peer-reviewed journals up to December 2016. Additional articles were identified by manual search of references found in the key articles. RESULTS In general, AR technology mainly includes 3D reconstruction, display, registration as well as tracking techniques and has recently been adopted gradually for liver surgeries including laparoscopy and laparotomy with video-based AR assisted laparoscopic resection as the main technical application. By applying AR technology, blood vessels and tumor structures in the liver can be displayed during surgery, which permits precise navigation during complex surgical procedures. Liver transformation and registration errors during surgery were the main factors that limit the application of AR technology. CONCLUSIONS With recent advances, AR technologies have the potential to improve hepatobiliary surgical procedures. However, additional clinical studies will be required to evaluate AR as a tool for reducing postoperative morbidity and mortality and for the improvement of long-term clinical outcomes. Future research is needed in the fusion of multiple imaging modalities, improving biomechanical liver modeling, and enhancing image data processing and tracking technologies to increase the accuracy of current AR methods.
Collapse
|
7
|
Vávra P, Roman J, Zonča P, Ihnát P, Němec M, Kumar J, Habib N, El-Gendi A. Recent Development of Augmented Reality in Surgery: A Review. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:4574172. [PMID: 29065604 PMCID: PMC5585624 DOI: 10.1155/2017/4574172] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. METHODS We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms "augmented reality" and "surgery." Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. CONCLUSIONS The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.
Collapse
Affiliation(s)
- P. Vávra
- Department of Surgery, University Hospital Ostrava, 17. Listopadu 1790, 708 52 Ostrava, Czech Republic
| | - J. Roman
- Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - P. Zonča
- Department of Surgery, University Hospital Ostrava, 17. Listopadu 1790, 708 52 Ostrava, Czech Republic
| | - P. Ihnát
- Department of Surgery, University Hospital Ostrava, 17. Listopadu 1790, 708 52 Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - M. Němec
- Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, 17. Listopadu 15/2172, 708 33 Ostrava, Czech Republic
| | - J. Kumar
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - N. Habib
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - A. El-Gendi
- Department of Surgery, Faculty of Medicine, Alexandria University, Chamblion Street, El Azareeta, Alexandria Governorate, Egypt
| |
Collapse
|
8
|
The status of augmented reality in laparoscopic surgery as of 2016. Med Image Anal 2017; 37:66-90. [DOI: 10.1016/j.media.2017.01.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/27/2022]
|
9
|
Otake Y, Leonard S, Reiter A, Rajan P, Siewerdsen JH, Gallia GL, Ishii M, Taylor RH, Hager GD. Rendering-Based Video-CT Registration with Physical Constraints for Image-Guided Endoscopic Sinus Surgery. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9415. [PMID: 25991876 DOI: 10.1117/12.2081732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We present a system for registering the coordinate frame of an endoscope to pre- or intra- operatively acquired CT data based on optimizing the similarity metric between an endoscopic image and an image predicted via rendering of CT. Our method is robust and semi-automatic because it takes account of physical constraints, specifically, collisions between the endoscope and the anatomy, to initialize and constrain the search. The proposed optimization method is based on a stochastic optimization algorithm that evaluates a large number of similarity metric functions in parallel on a graphics processing unit. Images from a cadaver and a patient were used for evaluation. The registration error was 0.83 mm and 1.97 mm for cadaver and patient images respectively. The average registration time for 60 trials was 4.4 seconds. The patient study demonstrated robustness of the proposed algorithm against a moderate anatomical deformation.
Collapse
Affiliation(s)
- Y Otake
- Department of Computer Science, Johns Hopkins University, Baltimore MD, USA ; Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - S Leonard
- Department of Computer Science, Johns Hopkins University, Baltimore MD, USA
| | - A Reiter
- Department of Computer Science, Johns Hopkins University, Baltimore MD, USA
| | - P Rajan
- Department of Computer Science, Johns Hopkins University, Baltimore MD, USA
| | - J H Siewerdsen
- Department of Boimedical Engineering, Johns Hopkins University, Baltimore MD, USA
| | - G L Gallia
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore MD, USA
| | - M Ishii
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore MD, USA
| | - R H Taylor
- Department of Computer Science, Johns Hopkins University, Baltimore MD, USA
| | - G D Hager
- Department of Computer Science, Johns Hopkins University, Baltimore MD, USA
| |
Collapse
|