1
|
Zhang Q, Liu J, Zhang Y, Zhang Y, Tian Z, Li W, Chen J, Mo X, Cai Y, Paliwal N, Meng H, Wang Y, Wang S, Yang X. Efficient simulation of a low-profile visualized intraluminal support device: a novel fast virtual stenting technique. Chin Neurosurg J 2018; 4:6. [PMID: 32922867 PMCID: PMC7398371 DOI: 10.1186/s41016-018-0112-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/28/2018] [Indexed: 11/17/2022] Open
Abstract
Background The low-profile visualized intraluminal support (LVIS) stent has become a promising endovascular option for treating intracranial aneurysms. To achieve better treatment of aneurysms using LVIS, we developed a fast virtual stenting technique for use with LVIS (F-LVIS) to evaluate hemodynamic changes in the aneurysm and validate its reliability. Methods A patient-specific aneurysm was selected for making comparisons between the real LVIS (R-LVIS) and the F-LVIS. To perform R-LVIS stenting, a hollow phantom based on a patient-specific aneurysm was fabricated using a three-dimensional printer. An R-LVIS was released in the phantom according to standard procedure. F-LVIS was then applied successfully in this aneurysm model. The computational fluid dynamics (CFD) values were calculated for both the F-LVIS and R-LVIS models. Qualitative and quantitative comparisons of the two models focused on hemodynamic parameters. Results The hemodynamic characteristics for R-LVIS and F-LVIS were well matched. Representative contours of velocities and wall shear stress (WSS) were consistently similar in both distribution and magnitude. The velocity vectors also showed high similarity, although the R-LVIS model showed faster and more fluid streams entering the aneurysm. Variation tendencies of the velocity in the aneurysm and the WSS on the aneurysm wall were also similar in the two models, with no statistically significant differences in either velocity or WSS. Conclusions The results of the computational hemodynamics indicate that F-LVIS is suitable for evaluating hemodynamic factors. This novel F-LVIS is considered efficient, practical, and effective.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongbin Tian
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenqiang Li
- Department of Neurosurgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Junfan Chen
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao Mo
- Capital Medical University School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, China
| | - Yunhan Cai
- Institute of Biomechanics, Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Nikhil Paliwal
- Toshiba Stroke and Vascular Research Center, University at Buffalo, The State University of New York, Buffalo, New York USA.,Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York USA
| | - Hui Meng
- Toshiba Stroke and Vascular Research Center, University at Buffalo, The State University of New York, Buffalo, New York USA.,Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York USA.,Department of Neurosurgery, University at Buffalo, The State University of New York, Buffalo, New York USA
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Shengzhang Wang
- Institute of Biomechanics, Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Kodama H, Shi C, Kojima M, Ikeda S, Arai F, Takahashi I, Negoro M, Fukuda T. Catheter manipulation training system based on quantitative measurement of catheter insertion and rotation. Adv Robot 2014. [DOI: 10.1080/01691864.2014.941005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|