1
|
Yamada G, Hashimoto D, Fujimoto K, Nakata M, Asamura S, Kawakami Y, Lwigale P. Topohistological alignments of ocular/penile organs. Anat Sci Int 2025:10.1007/s12565-025-00844-3. [PMID: 40358900 DOI: 10.1007/s12565-025-00844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Mammalian visual and genital (hereafter mainly penile) organs have been extensively studied albeit separately. Both organ systems contain sensation devices necessary for visual perception and sexual intercourse. Their terminal structures are covered with eyelid/prepuce followed by the sensitive epithelia of cornea/glans facing the eyeball and glans. These structures have been closely studied in humans for appropriate visual perception and copulation and have thus been treated by numerous surgeries for long periods. Despite the vastly divergent anatomy and physiological functions, there are a few intriguing topohistological similarities for both structures, functions, and pathology. The current article focuses on such features from various viewpoints.
Collapse
Affiliation(s)
- Gen Yamada
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan.
- Department of Plastic Reconstructive Surgery and Developmental Genetics, Wakayama Medical university, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan.
| | - Daiki Hashimoto
- Department of Physiology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kota Fujimoto
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
2
|
Wei M, Meng S, Dai F, Xiao L, Mu X, Tang J, Liu Y. Comparison of two 3D reconstruction models for understanding of complicated female pelvic tumors. Int J Gynaecol Obstet 2024; 166:672-681. [PMID: 38425240 DOI: 10.1002/ijgo.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Three-dimensional (3D) reconstructed models have been shown to improve visualization in complex female pelvic tumors. Cinematic rendering (CR) is a 3D imaging technique for computed tomography (CT) images, which creates more realistic images with the ability to enhance imaging of anatomical features for diagnosis. This study was set up to compare two types of 3D models and to validate the use of 3D anatomical techniques for the diagnosis of complex female pelvic tumors. METHODS The preclinical, randomized, two-sequence crossover investigation was performed from December 2022 to January 2023 at First Affiliated Hospital of Chongqing Medical University. Sixteen residents and 10 attending surgeons assessed the cases of 23 patients with two types of 3D model images. The surgeons were randomly assigned to two assessment sequences (CR-3D model group and CT-3D model group). For each case, participants selected one question that probed fundamental questions about the tumor's genesis throughout each assessment period. Following a 4-week washout period, case assessments were transferred to the other image modality. RESULTS The main result assessment was the accuracy of the answers. The time to answer the questions and the case assessment questionnaire was added as a secondary outcome. The mean scores in the CR-3D models (19.35 ± 1.87) varied significantly from those in the CT-CR group (16.77 ± 1.8) (P < 0.001), and solving the questions in the CT-3D model sequence (41.96 ± 6.31 s) varied significantly from that in the CR-3D model sequence (52.88 ± 5.95 s) (P < 0.001). Subgroup analysis revealed that there were statistically significant variations in the scores of female reproductive tumors, pelvic tumors other than the reproductive system, and retroperitoneal tumors (P = 0.005). Analysis of the assessment questionnaire showed that more surgeons choose CR 3D reconstruction (8.31 ± 0.76 vs 7.15 ± 1.19, P < 0.001). CONCLUSIONS The results suggest that each 3D reconstruction method has its own advantages. Surgeons feel that CR reconstruction models are a useful technique that can improve their comprehension of complex pelvic tumors, while traditional 3D models have an advantage in terms of speed to diagnosis.
Collapse
Affiliation(s)
- Miao Wei
- Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenglan Meng
- Department of Thoracic Surgery, Army Medical Center of People's Liberation Army of China, Chongqing, China
| | - Fengqin Dai
- Department of Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Xiao
- Department of Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoling Mu
- Department of Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junying Tang
- Department of Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingwei Liu
- Department of Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Schnabellehner S, Kraft M, Schoofs H, Ortsäter H, Mäkinen T. Penile cavernous sinusoids are Prox1-positive hybrid vessels. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2024; 6:e230014. [PMID: 38051669 PMCID: PMC10831540 DOI: 10.1530/vb-23-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Endothelial cells (ECs) of blood and lymphatic vessels have distinct identity markers that define their specialized functions. Recently, hybrid vasculatures with both blood and lymphatic vessel-specific features have been discovered in multiple tissues. Here, we identify the penile cavernous sinusoidal vessels (pc-Ss) as a new hybrid vascular bed expressing key lymphatic EC identity genes Prox1, Vegfr3,and Lyve1. Using single-cell transcriptome data of human corpus cavernosum tissue, we found heterogeneity within pc-S endothelia and observed distinct transcriptional alterations related to inflammatory processes in hybrid ECs in erectile dysfunction associated with diabetes. Molecular, ultrastructural, and functional studies further established hybrid identity of pc-Ss in mouse, and revealed their morphological adaptations and ability to perform lymphatic-like function in draining high-molecular-weight tracers. Interestingly, we found that inhibition of the key lymphangiogenic growth factor VEGF-C did not block the development of pc-Ss in mice, distinguishing them from other lymphatic and hybrid vessels analyzed so far. Our findings provide a detailed molecular characterization of hybrid pc-Ss and pave the way for the identification of molecular targets for therapies in conditions of dysregulated penile vasculature, including erectile dysfunction.
Collapse
Affiliation(s)
- Sarah Schnabellehner
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marle Kraft
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hans Schoofs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Hashimoto D, Fujimoto K, Nakata M, Suzuki T, Kumegawa S, Ueda Y, Suzuki K, Asamura S, Yamada G. Developmental and functional roles of androgen and interactive signals for external genitalia and erectile tissues. Reprod Med Biol 2024; 23:e12611. [PMID: 39372370 PMCID: PMC11456227 DOI: 10.1002/rmb2.12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Background Recent progress in molecular and signal analyses revealed essential functions of cellular signals including androgen and related growth factors such as Wnt regulators for external genitalia (ExG) development and its pathogenesis. Accumulated data showed their fundamental functions also for erectile tissue (corporal body) development and its abnormalities. The current review focuses on such signals from developmental and functional viewpoints. Methods Experimental strategies including histological and molecular signal analyses with conditional mutant mice for androgen and Wnt signals have been extensively utilized. Main findings Essential roles of androgen for the development of male-type ExG and urethral formation are shown. Wnt signals are associated with androgen for male-type ExG organogenesis. Androgen plays essential roles in the development of erectile tissue, the corporal body and it also regulates the duration time of erection. Wnt and other signals are essential for the regulation of mesenchymal cells of erectile tissue as shown by its conditional mutant mouse analyses. Stress signals, continuous erection, and the potential of lymphatic characteristics of the erectile vessels with sinusoids are also shown. Conclusion Reiterated involvement of androgen, Wnt, and other regulatory factors is stated for the development and pathogenesis of ExG and erectile tissues.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kota Fujimoto
- Department of UrologyUrological Science Institute, Yonsei University College of MedicineSeoulSouth Korea
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Takuya Suzuki
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Shinji Kumegawa
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Yuko Ueda
- Department of UrologyOsaka Women's and Children's HospitalOsakaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
5
|
Fujimoto K, Hashimoto D, Kim SW, Lee YS, Suzuki T, Nakata M, Kumegawa S, Asamura S, Yamada G. Novel erectile analyses revealed augmentable penile Lyve-1, the lymphatic marker, expression. Reprod Med Biol 2024; 23:e12570. [PMID: 38566911 PMCID: PMC10985380 DOI: 10.1002/rmb2.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose The pathophysiology of penis extends to erectile dysfunction (ED) to conditions including sexually transmitted diseases (STDs) and cancer. To date, there has been little research evaluating vascular drainage from the penis. We aimed to evaluate penile blood flow in vivo and analyze its possible relationship with the lymphatic maker. Materials and Methods We established an in vivo system designed to assess the dynamic blood outflow from the corpus cavernosum (CC) by dye injection. To analyze lymphatic characteristics in the CC, the expression of Lyve-1, the key lymphatic endothelium marker, was examined by the in vitro system and lipopolysaccharide (LPS) injection to mimic the inflammatory conditions. Results A novel cavernography methods enable high-resolution morphological and functional blood drainage analysis. The expression of Lyve-1 was detected along the sinusoids. Furthermore, its prominent expression was also observed after penile LPS injection and in the erectile condition. Conclusions The current in vivo system will potentially contribute to the assessment of penile pathology from a novel viewpoint. In addition, current analyses revealed inducible Lyve-1 expression for LPS injection and the erection state, which requires further analyses on penile lymphatic system.
Collapse
Affiliation(s)
- Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulKorea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulKorea
| | - Takuya Suzuki
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinji Kumegawa
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
6
|
Hashimoto D, Fujimoto K, Kim SW, Lee YS, Nakata M, Suzuki K, Wada Y, Asamura S, Yamada G. Emerging structural and pathological analyses on the erectile organ, corpus cavernous containing sinusoids. Reprod Med Biol 2023; 22:e12539. [PMID: 37663955 PMCID: PMC10472535 DOI: 10.1002/rmb2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background The corpus cavernosum (CC) containing sinusoids plays fundamental roles for erection. Analysis of pathological changes in the erectile system is studied by recent experimental systems. Various in vitro models utilizing genital mesenchymal-derived cells and explant culture systems are summarized. Methods 3D reconstruction of section images of murine CC was created. Ectopic chondrogenesis in aged mouse CC was shown by a gene expression study revealing the prominent expression of Sox9. Various experimental strategies utilizing mesenchyme-derived primary cells and tissue explants are introduced. Main Findings Possible roles of Sox9 in chondrogenesis and its regulation by several signals are suggested. The unique character of genital mesenchyme is shown by various analyses of external genitalia (ExG) derived cells and explant cultures. Such strategies are also applied to the analysis of erectile contraction/relaxation responses to many signals and aging process. Conclusion Erectile dysfunction (ED) is one of the essential topics for the modern aged society. More comprehensive studies are necessary to reveal the nature of the erectile system by combining multiple cell culture strategies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Yoshitaka Wada
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
7
|
Fujimoto K, Hashimoto D, Kashimada K, Kumegawa S, Ueda Y, Hyuga T, Hirashima T, Inoue N, Suzuki K, Hara I, Asamura S, Yamada G. A visualization system for erectile vascular dynamics. Front Cell Dev Biol 2022; 10:1000342. [PMID: 36313553 PMCID: PMC9615422 DOI: 10.3389/fcell.2022.1000342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Erection is an essential process which requires the male penis for copulation. This copulatory process depends on the vascular dynamic regulation of the penis. The corpus cavernosum (CC) in the upper (dorsal) part of the penis plays a major role in regulating blood flow inside the penis. When the CC is filled with blood, the sinusoids, including micro-vessels, dilate during erection. The CC is an androgen-dependent organ, and various genital abnormalities including erectile dysfunction (ED) are widely known. Previous studies have shown that androgen deprivation by castration results in significantly decreased smooth muscles of the CC. Experimental works in erectile biology have previously measured intracavernosal penile pressure and mechanical tension. Such reports analyze limited features without assessing the dynamic aspects of the erectile process. In the current study, we established a novel explant system enabling direct visual imaging of the sinusoidal lumen to evaluate the dynamic movement of the cavernous space. To analyze the alternation of sinusoidal spaces, micro-dissected CC explants by patent blue dye injection were incubated and examined for their structural alternations during relaxation/contraction. The dynamic process of relaxation/contraction was analyzed with various external factors administered to the CC. The system enabled the imaging of relaxation/contraction of the lumens of the sinusoids and the collagen-containing tissues. Histological analysis on the explant system also showed the relaxation/contraction. Thus, the system mimics the regulatory process of dynamic relaxation/contraction in the erectile response. The current system also enabled evaluating the erectile pathophysiology. In the current study, the lumen of sinusoids relaxed/contracted in castrated mice similarly with normal mice. These results suggested that the dynamic erectile relaxation/contraction process was similarly retained in castrated mice. However, the system also revealed decreased duration time of erection in castrated mice. The current study is expected to promote further understanding of the pathophysiology of ED, which will be useful for new treatments in the future. Hence, the current system provides unique information to investigate the novel regulations of erectile function, which can provide tools for analyzing the pathology of ED.
Collapse
Affiliation(s)
- Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daiki Hashimoto
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Kumegawa
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ueda
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Taiju Hyuga
- Department of Pediatric Urology, Children’s Medical Center Tochigi, Jichi Medical University, Tochigi, Japan
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Gen Yamada,
| |
Collapse
|
8
|
Kajimoto M, Suzuki K, Ueda Y, Fujimoto K, Takeo T, Nakagata N, Hyuga T, Isono K, Yamada G. Androgen/Wnt/β-catenin signal axis augments cell proliferation of the mouse erectile tissue, corpus cavernosum. Congenit Anom (Kyoto) 2022; 62:123-133. [PMID: 35318743 DOI: 10.1111/cga.12465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
The murine penile erectile tissues including corpus cavernosum (CC) are composed of blood vessels, smooth muscle, and connective tissue, showing marked sexual differences. It has been known that the androgens are required for sexually dimorphic organogenesis. It is however unknown about the features of androgen signaling during mouse CC development. It is also unclear how androgen-driven downstream factors are involved such processes. In the current study, we analyzed the onset of sexually dimorphic CC formation based on histological analyses, the dynamics of androgen receptor (AR) expression, and regulation of cell proliferation. Of note, we identified Dickkopf-related protein 2 (Dkk2), an inhibitor of β-catenin signaling, was predominantly expressed in female CC compared with male. Furthermore, administration of androgens resulted in activation of β-catenin signaling. We have found the Sox9 gene, one of the essential markers for chondrocyte, was specifically expressed in the developing CC. Hence, we utilized CC-specific, Sox9 CreERT2 , β-catenin conditional mutant mice. Such mutant mice showed defective cell proliferation. Furthermore, introduction of activated form of β-catenin mutation (gain of function mutation for Wnt/β-catenin signaling) in CC induced augmented cell proliferation. Altogether, we revealed androgen-Wnt/β-catenin signal dependent cell proliferation was essential for sexually dimorphic CC formation. These findings open new avenues for understanding developmental mechanisms of androgen-dependent cell proliferation during sexual differentiation.
Collapse
Affiliation(s)
- Mizuki Kajimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ueda
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.,Department of Pediatric Urology, Jichi Medical University, Children's Medical Center Tochigi, Tochigi, Japan
| | - Kyoichi Isono
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
9
|
Hashimoto D, Fujimoto K, Morioka S, Ayabe S, Kataoka T, Fukumura R, Ueda Y, Kajimoto M, Hyuga T, Suzuki K, Hara I, Asamura S, Wakana S, Yoshiki A, Gondo Y, Tamura M, Sasaki T, Yamada G. Establishment of mouse line showing inducible priapism-like phenotypes. Reprod Med Biol 2022; 21:e12472. [PMID: 35765371 PMCID: PMC9207557 DOI: 10.1002/rmb2.12472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Penile research is expected to reveal new targets for treatment and prevention of the complex mechanisms of its disorder including erectile dysfunction (ED). Thus, analyses of the molecular processes of penile ED and continuous erection as priapism are essential issues of reproductive medicine. Methods By performing mouse N-ethyl-N-nitrosourea mutagenesis and exome sequencing, we established a novel mouse line displaying protruded genitalia phenotype (PGP; priapism-like phenotype) and identified a novel Pitpna gene mutation for PGP. Extensive histological analyses on the Pitpna mutant and intracavernous pressure measurement (ICP) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS)/MS analyses were performed. Results We evaluated the role of phospholipids during erection for the first time and showed the mutants of inducible phenotypes of priapism. Moreover, quantitative analysis using LC-ESI/MS/MS revealed that the level of phosphatidylinositol (PI) was significantly lower in the mutant penile samples. These results imply that PI may contribute to penile erection by PITPα. Conclusions Our findings suggest that the current mutant is a mouse model for priapism and abnormalities in PI signaling pathways through PITPα may lead to priapism providing an attractive novel therapeutic target in its treatment.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Kota Fujimoto
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Shin Morioka
- Department of Biochemical Pathophysiology/Lipid BiologyMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shinya Ayabe
- Experimental Animal DivisionRIKEN BioResource Research CenterIbarakiJapan
| | - Tomoya Kataoka
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
| | - Ryutaro Fukumura
- Clinical Laboratories Department sSRL & Shizuoka Cancer Center Collaborative Laboratories, IncShizuoka PrefJapan
| | - Yuko Ueda
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of UrologyWakayama Medical UniversityWakayamaJapan
| | - Mizuki Kajimoto
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Taiju Hyuga
- Department of Pediatric UrologyChildren's Medical Center TochigiJichi Medical UniversityTochigiJapan
| | - Kentaro Suzuki
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Isao Hara
- Department of UrologyWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Shigeharu Wakana
- Department of Animal ExperimentationFoundation for Biomedical Research and Innovation at KobeCreative Lab for Innovation in Kobe 5F 6‐3‐7KobeHyogoJapan
| | - Atsushi Yoshiki
- Experimental Animal DivisionRIKEN BioResource Research CenterIbarakiJapan
| | - Yoichi Gondo
- Department of Molecular Life SciencesDivision of Basic Medical Science and Molecular MedicineTokai University School of MedicineIsehara‐shiKanagawaJapan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype AnalysisRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology/Lipid BiologyMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Gen Yamada
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
10
|
Kumegawa S, Yamada G, Hashimoto D, Hirashima T, Kajimoto M, Isono K, Fujimoto K, Suzuki K, Uemura K, Ema M, Asamura S. Development of Surgical and Visualization Procedures to Analyze Vasculatures by Mouse Tail Edema Model. Biol Proced Online 2021; 23:21. [PMID: 34758723 PMCID: PMC8582144 DOI: 10.1186/s12575-021-00159-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Background Because of the high frequency of chronic edema formation in the current “aged” society, analyses and detailed observation of post-surgical edema are getting more required. Post-surgical examination of the dynamic vasculature including L.V. (Lymphatic Vasculature) to monitor edema formation has not been efficiently performed. Hence, procedures for investigating such vasculature are essential. By inserting transparent sheet into the cutaneous layer of mouse tails as a novel surgery model (theTailEdema bySilicone sheet mediatedTransparency protocol; TEST), the novel procedures are introduced and analyzed by series of histological analyses including video-based L.V. observation and 3D histological reconstruction of vasculatures in mouse tails. Results The dynamic generation of post-surgical main and fine (neo) L.V. connective structure during the edematous recovery process was visualized by series of studies with a novel surgery model. Snapshot images taken from live binocular image recording for TEST samples suggested the presence of main and elongating fine (neo) L.V. structure. After the ligation of L.V., the enlargement of main L.V. was confirmed. In the case of light sheet fluorescence microscopy (LSFM) observation, such L.V. connections were also suggested by using transparent 3D samples. Finally, the generation of neo blood vessels particularly in the region adjacent to the silicone sheet and the operated boundary region was suggested in 3D reconstruction images. However, direct detection of elongating fine (neo) L.V. was not suitable for analysis by such LSFM and 3D reconstruction procedures. Thus, such methods utilizing fixed tissues are appropriate for general observation for the operated region including of L.V. Conclusions The current surgical procedures and analysis on the post-surgical status are the first case to observe vasculatures in vivo with a transparent sheet. Systematic analyses including the FITC-dextran mediated snap shot images observation suggest the elongation of fine (neo) lymphatic vasculature. Post-surgical analyses including LSFM and 3D histological structural reconstruction, are suitable to reveal the fixed structures of blood and lymphatic vessels formation. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-021-00159-3.
Collapse
Affiliation(s)
- Shinji Kumegawa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Medical University of Wakayama, Wakayama, Japan.
| | - Daiki Hashimoto
- Department of molecular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tsuyoshi Hirashima
- The Hakubi Center/Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mizuki Kajimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Kyoichi Isono
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Kazuhisa Uemura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Medical University of Wakayama, Wakayama, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Diseases Models, Research Center for Animal Life Science, Medical University of Shiga, Otsu, Shiga, Japan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Medical University of Wakayama, Wakayama, Japan
| |
Collapse
|