1
|
Wang Y. Rendezvous with Vaccinia Virus in the Post-smallpox Era: R&D Advances. Viruses 2023; 15:1742. [PMID: 37632084 PMCID: PMC10457812 DOI: 10.3390/v15081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Smallpox was eradicated in less than 200 years after Edward Jenner's practice of cowpox variolation in 1796. The forty-three years of us living free of smallpox, beginning in 1979, never truly separated us from poxviruses. The recent outbreak of monkeypox in May 2022 might well warn us of the necessity of keeping up both the scientific research and public awareness of poxviruses. One of them in particular, the vaccinia virus (VACV), has been extensively studied as a vector given its broad host range, extraordinary thermal stability, and exceptional immunogenicity. Unceasing fundamental biological research on VACV provides us with a better understanding of its genetic elements, involvement in cellular signaling pathways, and modulation of host immune responses. This enables the rational design of safer and more efficacious next-generation vectors. To address the new technological advancement within the past decade in VACV research, this review covers the studies of viral immunomodulatory genes, modifications in commonly used vectors, novel mechanisms for rapid generation and purification of recombinant virus, and several other innovative approaches to studying its biology.
Collapse
Affiliation(s)
- Yuxiang Wang
- Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Tripathi S, Khatri P, Fatima Z, Pandey RP, Hameed S. A Landscape of CRISPR/Cas Technique for Emerging Viral Disease Diagnostics and Therapeutics: Progress and Prospects. Pathogens 2022; 12:56. [PMID: 36678404 PMCID: PMC9863163 DOI: 10.3390/pathogens12010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Viral diseases have emerged as a serious threat to humanity and as a leading cause of morbidity worldwide. Many viral diagnostic methods and antiviral therapies have been developed over time, but we are still a long way from treating certain infections caused by viruses. Acquired immunodeficiency syndrome (AIDS) is one of the challenges where current medical science advancements fall short. As a result, new diagnostic and treatment options are desperately needed. The CRISPR/Cas9 system has recently been proposed as a potential therapeutic approach for viral disease treatment. CRISPR/Cas9 is a specialised, effective, and adaptive gene-editing technique that can be used to modify, delete, or correct specific DNA sequences. It has evolved into an advanced, configurable nuclease-based single or multiple gene-editing tool with a wide range of applications. It is widely preferred simply because its operational procedures are simple, inexpensive, and extremely efficient. Exploration of infectious virus genomes is required for a comprehensive study of infectious viruses. Herein, we have discussed the historical timeline-based advancement of CRISPR, CRISPR/Cas9 as a gene-editing technology, the structure of CRISPR, and CRISPR as a diagnostic tool for studying emerging viral infections. Additionally, utilizing CRISPR/Cas9 technology to fight viral infections in plants, CRISPR-based diagnostics of viruses, pros, and cons, and bioethical issues of CRISPR/Cas9-based genomic modification are discussed.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Purnima Khatri
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
3
|
López-Muñoz AD, Rastrojo A, Martín R, Alcami A. High-throughput engineering of cytoplasmic- and nuclear-replicating large dsDNA viruses by CRISPR/Cas9. J Gen Virol 2022; 103:001797. [PMID: 36260063 PMCID: PMC10019086 DOI: 10.1099/jgv.0.001797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of CRISPR/Cas9 to improve genome engineering efficiency for large dsDNA viruses has been extensively described, but a robust and versatile method for high-throughput generation of marker-free recombinants for a desired locus has not yet been reported. Cytoplasmic-replicating viruses use their own repair enzymes for homologous recombination, while nuclear-replicating viruses use the host repair machinery. This is translated into a wide range of Cas9-induced homologous recombination efficiencies, depending on the virus replication compartment and viral/host repair machinery characteristics and accessibility. However, the use of Cas9 as a selection agent to target parental virus genomes robustly improves the selection of desired recombinants across large dsDNA viruses. We used ectromelia virus (ECTV) and herpes simplex virus (HSV) type 1 and 2 to optimize a CRISPR/Cas9 method that can be used versatilely for efficient genome editing and selection of both cytoplasmic- and nuclear-replicating viruses. We performed a genome-wide genetic variant analysis of mutations located at predicted off-target sequences for 20 different recombinants, showing off-target-free accuracy by deep sequencing. Our results support this optimized method as an efficient, accurate and versatile approach to enhance the two critical factors of high-throughput viral genome engineering: generation and colour-based selection of recombinants. This application of CRISPR/Cas9 reduces the time and labour for screening of desired recombinants, allowing for high-throughput generation of large collections of mutant dsDNA viruses for a desired locus, optimally in less than 2 weeks.
Collapse
Affiliation(s)
- Alberto Domingo López-Muñoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Present address: Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Present address: Genetic Unit, Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Jamehdor S, Pajouhanfar S, Saba S, Uzan G, Teimoori A, Naserian S. Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells 2022; 11:999. [PMID: 35326449 PMCID: PMC8946942 DOI: 10.3390/cells11060999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.
Collapse
Affiliation(s)
- Saleh Jamehdor
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 989155432609, Iran;
| | - Sara Pajouhanfar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sadaf Saba
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838738, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
5
|
Hu H, Pan K, Shang Y, Guo Y, Xiao H, Deng F, Wang M, Hu Z. Multiloci Manipulation of Baculovirus Genome Reveals the Pivotal Role of Homologous Regions in Viral DNA Replication, Progeny Production, and Enhancing Transcription. ACS Synth Biol 2022; 11:144-153. [PMID: 34933547 DOI: 10.1021/acssynbio.1c00303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The engineering of viral genomes facilitates both fundamental and applied research on viruses. However, the multiloci manipulation of DNAs of viruses with large DNA genomes, such as baculoviruses, herpesviruses, and poxviruses, is technically challenging, particularly for highly homologous or repetitive sequences. Homologous regions (hrs) have multiple copies in many large DNA viruses and play pivotal roles in the viral life cycle. Here, we used synthetic biology to investigate the fundamental function of baculoviral hrs by conducting multiloci manipulation of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) DNA that contains eight hrs scattered in the genome. Using transformation-associated recombination in yeast, we generated recombinant AcMNPV genomes in which we deleted all hrs or retained a single hr (hr1, hr2, or hr3). Infectious viruses were rescued after transfecting the synthetic viral genomes into host cells, and their replication features were characterized. The results demonstrated that deletion of all hrs severely compromised viral DNA replication and progeny production, whereas retaining only a single hr was essential for efficient viral DNA replication and progeny production. The synthetic virus with hr2 or hr3 showed a growth curve similar to that of the parental virus. Transcriptomic analysis revealed that hr1, hr2, and hr3 could enhance gene transcription within a surrounding region of 14.6 kb, 13.8 kb, and 29.8 kb, respectively. Overall, this study revealed the advantages of synthetic biology in multiloci engineering and functional studies of large DNA viruses. In addition, our findings on hrs will be helpful for the design and improvement of baculovirus-based expression vectors.
Collapse
Affiliation(s)
- Hengrui Hu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Pan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yu Shang
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yijia Guo
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Xiao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Deng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Manli Wang
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Zhihong Hu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
6
|
Lin H, Li G, Peng X, Deng A, Ye L, Shi L, Wang T, He J. The Use of CRISPR/Cas9 as a Tool to Study Human Infectious Viruses. Front Cell Infect Microbiol 2021; 11:590989. [PMID: 34513721 PMCID: PMC8430244 DOI: 10.3389/fcimb.2021.590989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) systems are a set of versatile gene-editing toolkit that perform diverse revolutionary functions in various fields of application such as agricultural practices, food industry, biotechnology, biomedicine, and clinical research. Specially, as a novel antiviral method of choice, CRISPR/Cas9 system has been extensively and effectively exploited to fight against human infectious viruses. Infectious diseases including human immunodeficiency virus (HIV), hepatitis B virus (HBV), human papillomavirus (HPV), and other viruses are still global threats with persistent potential to probably cause pandemics. To facilitate virus removals, the CRISPR/Cas9 system has already been customized to confer new antiviral capabilities into host animals either by modifying host genome or by directly targeting viral inherent factors in the form of DNA. Although several limitations and difficulties still need to be conquered, this technology holds great promises in the treatment of human viral infectious diseases. In this review, we will first present a brief biological feature of CRISPR/Cas9 systems, which includes a description of CRISPR/Cas9 structure and composition; thereafter, we will focus on the investigations and applications that employ CRISPR/Cas9 system to combat several human infectious viruses and discuss challenges and future perspectives of using this new platform in the preclinical and clinical settings as an antiviral strategy.
Collapse
Affiliation(s)
- Huafeng Lin
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China.,Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Gang Li
- Institute of Biomedicine and Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xiangwen Peng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Aimin Deng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Tuanmei Wang
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Jun He
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Methods for the Manipulation of Herpesvirus Genome and the Application to Marek's Disease Virus Research. Microorganisms 2021; 9:microorganisms9061260. [PMID: 34200544 PMCID: PMC8228275 DOI: 10.3390/microorganisms9061260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Herpesviruses are a group of double-strand DNA viruses that infect a wide range of hosts, including humans and animals. In the past decades, numerous methods have been developed to manipulate herpesviruses genomes, from the introduction of random mutations to specific genome editing. The development of genome manipulation methods has largely advanced the study of viral genes function, contributing not only to the understanding of herpesvirus biology and pathogenesis, but also the generation of novel vaccines and therapies to control and treat diseases. In this review, we summarize the major methods of herpesvirus genome manipulation with emphasis in their application to Marek’s disease virus research.
Collapse
|
8
|
Latest Advances of Virology Research Using CRISPR/Cas9-Based Gene-Editing Technology and Its Application to Vaccine Development. Viruses 2021; 13:v13050779. [PMID: 33924851 PMCID: PMC8146441 DOI: 10.3390/v13050779] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, the CRISPR/Cas9-based gene-editing techniques have been well developed and applied widely in several aspects of research in the biological sciences, in many species, including humans, animals, plants, and even in viruses. Modification of the viral genome is crucial for revealing gene function, virus pathogenesis, gene therapy, genetic engineering, and vaccine development. Herein, we have provided a brief review of the different technologies for the modification of the viral genomes. Particularly, we have focused on the recently developed CRISPR/Cas9-based gene-editing system, detailing its origin, functional principles, and touching on its latest achievements in virology research and applications in vaccine development, especially in large DNA viruses of humans and animals. Future prospects of CRISPR/Cas9-based gene-editing technology in virology research, including the potential shortcomings, are also discussed.
Collapse
|
9
|
Haddad CO, Kalt I, Shovman Y, Xia L, Schlesinger Y, Sarid R, Parnas O. Targeting the Kaposi's sarcoma-associated herpesvirus genome with the CRISPR-Cas9 platform in latently infected cells. Virol J 2021; 18:56. [PMID: 33731154 PMCID: PMC7966637 DOI: 10.1186/s12985-021-01527-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Kaposi's sarcoma-associated herpesvirus (KSHV) is a transforming gammaherpesvirus. Like other herpesviruses, KSHV infection is for life long and there is no treatment that can cure patients from the virus. In addition, there is an urgent need to target viral genes to study their role during the infection cycle. The CRISPR-Cas9 technology offers a means to target viral genomes and thus may offer a novel strategy for viral cure as well as for better understanding of the infection process. We evaluated the suitability of this platform for the targeting of KSHV. METHODS We have used the recombinat KSHV BAC16 genome, which contains an expression cassette encoding hygromycin-resistance and a GFP marker gene. Three genes were targeted: gfp, which serves as a marker for infection; orf45 encoding a lytic viral protein; and orf73, encoding LANA which is crucial for latent infection. The fraction of cells expressing GFP, viral DNA levels and LANA expression were monitored and viral genomes were sequenced. RESULTS We found that KSHV episomes can be targeted by CRISPR-Cas9. Interestingly, the quantity of KSHV DNA declined, even when target sites were not functionally important for latency. In addition, we show that antibiotic selection, used to maintain infection, interferes with the outcome of targeting. CONCLUSIONS Our study provides insights into the use of this fundamental approach for the study and manipulation of KSHV. It provides guidelines for the targeting CRISPR-Cas9 to the viral genome and for outcomes interpretation.
Collapse
Affiliation(s)
- Coral Orel Haddad
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Yehuda Shovman
- The Concern Foundation at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120, Jerusalem, Israel
| | - Lei Xia
- The Concern Foundation at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120, Jerusalem, Israel
| | - Yehuda Schlesinger
- The Concern Foundation at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120, Jerusalem, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| | - Oren Parnas
- The Concern Foundation at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120, Jerusalem, Israel.
| |
Collapse
|
10
|
Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. NANO TODAY 2021; 36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Rapid poxvirus engineering using CRISPR/Cas9 as a selection tool. Commun Biol 2020; 3:643. [PMID: 33144673 PMCID: PMC7641209 DOI: 10.1038/s42003-020-01374-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
In standard uses of CRISPR/Cas9 technology, the cutting of genomes and their efficient repair are considered to go hand-in-hand to achieve desired genetic changes. This includes the current approach for engineering genomes of large dsDNA viruses. However, for poxviruses we show that Cas9-guide RNA complexes cut viral genomes soon after their entry into cells, but repair of these breaks is inefficient. As a result, Cas9 targeting makes only modest, if any, improvements to basal rates of homologous recombination between repair constructs and poxvirus genomes. Instead, Cas9 cleavage leads to inhibition of poxvirus DNA replication thereby suppressing virus spread in culture. This unexpected outcome allows Cas9 to be used as a powerful tool for selecting conventionally generated poxvirus recombinants, which are otherwise impossible to separate from a large background of parental virus without the use of marker genes. This application of CRISPR/Cas9 greatly speeds up the generation of poxvirus-based vaccines, making this platform considerably more attractive in the context of personalised cancer vaccines and emerging disease outbreaks. Gowripalan, Smith et al. use CRISPR/Cas9 technology to rapidly select recombinant poxviruses without using selectable marker genes. They find that Cas9 cleavage inhibits poxvirus DNA replication, suppressing virus spread in culture. This application makes poxviruses more attractive vector platforms for fighting cancer and emerging disease outbreaks.
Collapse
|
12
|
Yin L, Zhao F, Sun H, Wang Z, Huang Y, Zhu W, Xu F, Mei S, Liu X, Zhang D, Wei L, Cen S, Hu S, Liang C, Guo F. CRISPR-Cas13a Inhibits HIV-1 Infection. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:147-155. [PMID: 32585623 PMCID: PMC7321785 DOI: 10.1016/j.omtn.2020.05.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/15/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas provides bacteria and archaea with immunity against invading phages and foreign plasmid DNA and has been successfully adapted for gene editing in a variety of species. The class 2 type VI CRISPR-Cas effector Cas13a targets and cleaves RNA, providing protection against RNA phages. Here we report the repurposing of CRISPR-Cas13a to inhibit human immunodeficiency virus type 1 (HIV-1) infection through targeting HIV-1 RNA and diminishing viral gene expression. We observed strong inhibition of HIV-1 infection by CRISPR-Cas13a in human cells. We showed that CRISPR-Cas13a not only diminishes the level of newly synthesized viral RNA, either from the transfected plasmid DNA or from the viral DNA, which is integrated into cellular DNA, but it also targets and destroys the viral RNA that enters cells within viral capsid, leading to strong inhibition of HIV-1 infection. Together, our results suggest that CRISPR-Cas13a provides a potential novel tool to treat viral diseases in humans.
Collapse
Affiliation(s)
- Lijuan Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Hong Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhen Wang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Weijun Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Di Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - Siqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China.
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China.
| |
Collapse
|