1
|
Kumar A, Sharma A, Tirpude NV, Thakur S, Kumar S. Combating the Progression of Novel Coronavirus SARS-CoV-2 Infectious Disease: Current State and Future Prospects in Molecular Diagnostics and Drug Discovery. Curr Mol Med 2023; 23:127-146. [PMID: 34344288 DOI: 10.2174/1566524021666210803154250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
A highly infectious and life-threatening virus was first reported in Wuhan, China, in late 2019, and it rapidly spread all over the world. This novel virus belongs to the coronavirus family and is associated with severe acute respiratory syndrome (SARS), causing respiratory disease known as COVID-19. In March 2020, WHO has declared the COVID-19 outbreak a global pandemic. Its morbidity and mortality rates are swiftly rising day by day, with the situation becoming more severe and fatal for the comorbid population. Many COVID-19 patients are asymptomatic, but they silently spread the infection. There is a need for proper screening of infected patients to prevent the epidemic transmission of disease and for early curative interventions to reduce the risk of developing severe complications from COVID-19. To date, the diagnostic assays are of two categories, molecular detection of viral genetic material by real-time RTpolymerase chain reaction and serological test, which relies on detecting antiviral antibodies. Unfortunately, there are no effective prophylactics and therapeutics available against COVID-19. However, a few drugs have shown promising antiviral activity against it, and these presently are being referred for clinical trials, albeit FDA has issued an Emergency Use Authorization (EUA) for the emergency use of a few drugs for SARSCoV- 2 infection. This review provides an insight into current progress, challenges and future prospects of laboratory detection methods of COVID-19, and highlights the clinical stage of the major evidence-based drugs/vaccines recommended against the novel SARS-CoV-2 pandemic virus.
Collapse
Affiliation(s)
- Arbind Kumar
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Aashish Sharma
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Narendra Vijay Tirpude
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Sharad Thakur
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| |
Collapse
|
2
|
Gupta T, Thakkar P, Kalra B, Kannan S. Hydroxychloroquine in the treatment of coronavirus disease 2019: Rapid updated systematic review and meta-analysis. Rev Med Virol 2022; 32:e2276. [PMID: 34245622 PMCID: PMC8420202 DOI: 10.1002/rmv.2276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 continues to grow and spread throughout the world since being declared a pandemic. Despite extensive scientific research globally including repurposing of several existing drugs, there is no effective or proven therapy for this enigmatic disease which is still largely managed empirically This systematic review evaluated the role of hydroxychloroquine (HCQ) in the treatment of COVID-19 infection and was conducted using Cochrane methodology for systematic reviews of interventional studies including risk of bias assessment and grading of the quality of evidence. Only prospective clinical trials randomly assigning COVID-19 patients to HCQ plus standard of care therapy (test arm) versus placebo/standard of care (control arm) were included. Data were pooled using the random-effects model and expressed as risk ratio (RR) with 95% confidence interval (CI). A total of 10,492 patients from 19 randomised controlled trials were included. The use of HCQ was not associated with higher rates of clinical improvement (RR = 1.00, 95% CI: 0.96-1.03, p = 0.79) or reduction in all-cause mortality by Day14 (RR = 1.07, 95% CI: 0.97-1.19, p = 0.19) or Day28 (RR = 1.08, 95% CI: 0.99-1.19, p = 0.09) compared to placebo/standard of care. There was no significant difference in serious adverse events between the two arms (RR = 1.01, 95% CI: 0.85-1.19, p = 0.95). There is low-to-moderate certainty evidence that HCQ therapy is generally safe but does not reduce mortality or enhance recovery in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of Radiation OncologyClinical Research CentreAdvanced Centre for Treatment Research & Education in Cancer (ACTREC)Tata Memorial CentreHomi Bhabha National Institute (HBNI)KhargharNavi MumbaiIndia
| | - Prafulla Thakkar
- Division of Internal MedicineClinical Research CentreAdvanced Centre for Treatment Research & Education in Cancer (ACTREC)Tata Memorial CentreHomi Bhabha National Institute (HBNI)KhargharNavi MumbaiIndia
| | - Babusha Kalra
- Department of Radiation OncologyClinical Research CentreAdvanced Centre for Treatment Research & Education in Cancer (ACTREC)Tata Memorial CentreHomi Bhabha National Institute (HBNI)KhargharNavi MumbaiIndia
| | - Sadhana Kannan
- Clinical Research SecretariatClinical Research CentreAdvanced Centre for Treatment Research & Education in Cancer (ACTREC)Tata Memorial CentreHomi Bhabha National Institute (HBNI)KhargharNavi MumbaiIndia
| |
Collapse
|
3
|
Denel-Bobrowska M, Olejniczak AB. Non-nucleoside structured compounds with antiviral activity—past 10 years (2010–2020). Eur J Med Chem 2022; 231:114136. [PMID: 35085926 PMCID: PMC8769541 DOI: 10.1016/j.ejmech.2022.114136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Nucleosides and their derivatives are a well-known and well-described class of compounds with antiviral activity. Currently, in the era of the COVID-19 pandemic, scientists are also looking for compounds not related to nucleosides with antiviral properties. This review aims to provide an overview of selected synthetic antiviral agents not associated to nucleosides developed against human viruses and introduced to preclinical and clinical trials as well as drugs approved for antiviral therapy over the last 10 years. The article describes for the first time the wide classification of such antiviral drugs and drug candidates and briefly summarizes the biological target and clinical applications of the compounds. The described compounds are arranged according to the antiviral mechanism of action. Knowledge of the drug's activity toward specific molecular targets may be the key to researching new antiviral compounds and repositioning drugs already approved for clinical use. The paper also briefly discusses the future directions of antiviral therapy. The described examples of antiviral compounds can be helpful for further drug development.
Collapse
|
4
|
Rao GK, Gowthami B, Naveen NR, Samudrala PK. An updated review on potential therapeutic drug candidates, vaccines and an insight on patents filed for COVID-19. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100063. [PMID: 34870158 PMCID: PMC8498785 DOI: 10.1016/j.crphar.2021.100063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of COVID-19 was recognized in December 2019 in China and as of October5th, the pandemic was swept through 216 countries and infected around 34,824,108 individuals, thus posing an unprecedented threat to world's health and economy. Several researchers reported that, a significant mutation in membrane proteins and receptor binding sites of preceding severe acute respiratory syndrome coronavirus (SARS-CoV) to turned as novel SARS-CoV-2 virus and disease was named as COVID-19 (Coronavirus disease 2019). Unfortunately, there is no specific treatment available for COVID-19 patients. The lessons learned from the past management of SARS-CoV and other pandemics, have provided some insights to treat COVID-19. Currently, therapies like anti-viral treatment, immunomodulatory agents, plasma transfusion and supportive intervention etc., are using to treat the COVID-19. Few of these were proven to provide significant therapeutic benefits in treating the COVID-19, however no drug is approved by the regulatory agencies. As the fatality rate is high in patients with comorbid conditions, we have also enlightened the current in-line treatment therapies and specific treatment strategies in comorbid conditions to combat the emergence of COVID-19. In addition, pharmaceutical, biological companies and research institutions across the globe have begun to develop thesafe and effective vaccine for COVID-19. Globally around 170 teams of researchers are racing to develop the COVID-19 vaccine and here we have discussed about their current status of development. Furthermore, recent patents filed in association with COVID-19 was elaborated. This can help many individuals, researchers or health workers, in applying these principles for diagnosis/prevention/management/treatment of the current pandemic.
Collapse
Affiliation(s)
- G.S.N. Koteswara Rao
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522502, India
| | - Buduru Gowthami
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Andhra Pradesh 516126, India
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, 571448, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram, 534202, Andhra Pradesh, India
| |
Collapse
|
5
|
Griffiths PD. Vaccines for SARS coronavirus 2 and the new normal in vaccinology. Rev Med Virol 2021; 31:e2229. [PMID: 33666285 PMCID: PMC7995066 DOI: 10.1002/rmv.2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Noreen S, Maqbool I, Madni A. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur J Pharmacol 2021; 894:173854. [PMID: 33428898 PMCID: PMC7836247 DOI: 10.1016/j.ejphar.2021.173854] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
The current outbreak of novel COVID-19 challenges the development of an efficient treatment plan as soon as possible. Several promising treatment options stand out as potential therapy of COVID-19, including plasma-derived drugs, monoclonal antibodies, antivirals, antimalarial, cell therapy, and corticosteroids. Dexamethasone an approved corticosteroid medication, acting as an anti-inflammatory and immunosuppressant agent. In the current pandemic, dexamethasone is declared a "major development" in the fight against COVID-19. Steroidal dexamethasone was presented as the recent advancement that significantly reduces the mortality rate among severe COVID-19 cases. This review summarizes the preliminary opinion about the dexamethasone outbreak, therapeutic potential, risks, and strategies during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| |
Collapse
|
7
|
Shoieb SM, El-Ghiaty MA, El-Kadi AOS. Targeting arachidonic acid-related metabolites in COVID-19 patients: potential use of drug-loaded nanoparticles. EMERGENT MATERIALS 2020; 4:265-277. [PMID: 33225219 PMCID: PMC7670111 DOI: 10.1007/s42247-020-00136-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 05/02/2023]
Abstract
In March 2020, The World Health Organization (WHO) has declared that the coronavirus disease 2019 (COVID-19) is characterized as a global pandemic. As of September 2020, infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to 213 countries and territories around the world, affected more than 31.5 million people, and caused more than 970,000 deaths worldwide. Although COVID-19 is a respiratory illness that mainly targets the lungs, it is currently well established that it is a multifactorial disease that affects other extra-pulmonary systems and strongly associated with a detrimental inflammatory response. Evidence has shown that SARS-CoV-2 causes perturbation in the arachidonic acid (AA) metabolic pathways; this disruption could lead to an imbalance between the pro-inflammatory metabolites of AA including mid-chain HETEs and terminal HETE (20-HETE) and the anti-inflammatory metabolites such as EETs and subterminal HETEs. Therefore, we propose novel therapeutic strategies to modulate the level of endogenous anti-inflammatory metabolites of AA and induce the patient's endogenous resolution mechanisms that will ameliorate the virus-associated systemic inflammation and enhance the primary outcomes in COVID-19 patients. Also, we propose that using nanoencapsulation of AA and its associated metabolites will contribute to the development of safer and more efficacious treatments for the management of COVID-19.
Collapse
Affiliation(s)
- Sherif M. Shoieb
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Mahmoud A. El-Ghiaty
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| |
Collapse
|
8
|
Khan MM, Noor A, Madni A, Shafiq M. Emergence of novel coronavirus and progress toward treatment and vaccine. Rev Med Virol 2020; 30:e2116. [PMID: 32495979 PMCID: PMC7300813 DOI: 10.1002/rmv.2116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/01/2023]
Abstract
In late December 2019, a group of patients was observed with pneumonia‐like symptoms that were linked with a wet market in Wuhan, China. The patients were found to have a novel coronavirus genetically related to a bat coronavirus that was termed SARS‐CoV‐2. The virus gradually spread worldwide and was declared a pandemic by WHO. Scientists have started trials on potential preventive and treatment options. Currently, there is no specific approved treatment for SARS‐CoV‐2, and various clinical trials are underway to explore better treatments. Some previously approved antiviral and other drugs have shown some in vitro activity. Here we summarize the fight against this novel coronavirus with particular focus on the different treatment options and clinical trials exploring treatment as well as work done toward development of vaccines.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Primary and Secondary Healthcare Department, Government of Punjab (CEO (DHA) office D.G.Khan), Dera Ghazi Khan, Pakistan
| | - Amna Noor
- Primary and Secondary Healthcare Department, Government of Punjab (RHC-161/TDA Layyah), Layyah, Pakistan
| | - Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mudassir Shafiq
- Department of Pulmonology, District Headquarter Hospital, Rawalpinid, Pakistan
| |
Collapse
|