1
|
Kumar A, Sharma A, Tirpude NV, Thakur S, Kumar S. Combating the Progression of Novel Coronavirus SARS-CoV-2 Infectious Disease: Current State and Future Prospects in Molecular Diagnostics and Drug Discovery. Curr Mol Med 2023; 23:127-146. [PMID: 34344288 DOI: 10.2174/1566524021666210803154250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
A highly infectious and life-threatening virus was first reported in Wuhan, China, in late 2019, and it rapidly spread all over the world. This novel virus belongs to the coronavirus family and is associated with severe acute respiratory syndrome (SARS), causing respiratory disease known as COVID-19. In March 2020, WHO has declared the COVID-19 outbreak a global pandemic. Its morbidity and mortality rates are swiftly rising day by day, with the situation becoming more severe and fatal for the comorbid population. Many COVID-19 patients are asymptomatic, but they silently spread the infection. There is a need for proper screening of infected patients to prevent the epidemic transmission of disease and for early curative interventions to reduce the risk of developing severe complications from COVID-19. To date, the diagnostic assays are of two categories, molecular detection of viral genetic material by real-time RTpolymerase chain reaction and serological test, which relies on detecting antiviral antibodies. Unfortunately, there are no effective prophylactics and therapeutics available against COVID-19. However, a few drugs have shown promising antiviral activity against it, and these presently are being referred for clinical trials, albeit FDA has issued an Emergency Use Authorization (EUA) for the emergency use of a few drugs for SARSCoV- 2 infection. This review provides an insight into current progress, challenges and future prospects of laboratory detection methods of COVID-19, and highlights the clinical stage of the major evidence-based drugs/vaccines recommended against the novel SARS-CoV-2 pandemic virus.
Collapse
Affiliation(s)
- Arbind Kumar
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Aashish Sharma
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Narendra Vijay Tirpude
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Sharad Thakur
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| |
Collapse
|
2
|
Kumar A, Sharma A, Tirpude NV, Padwad Y, Hallan V, Kumar S. Plant-derived immuno-adjuvants in vaccines formulation: a promising avenue for improving vaccines efficacy against SARS-CoV-2 virus. Pharmacol Rep 2022; 74:1238-1254. [PMID: 36125739 PMCID: PMC9487851 DOI: 10.1007/s43440-022-00418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak has posed a plethora of problems for the global healthcare system and socioeconomic burden. Despite valiant efforts to contain the COVID-19 outbreak, the situation has deteriorated to the point that there are no viable preventive therapies to treat this disease. The case count has skyrocketed globally due to the newly evolved variants. Despite vaccination drives, the re-occurrence of recent pandemic waves has reinforced the importance of innovation/utilization of immune-booster to achieve appropriate long-term vaccine protection. Plant-derived immuno-adjuvants, which have multifaceted functions, can impede infections by boosting the immune system. Many previous studies have shown that formulation of vaccines using plant-derived adjuvant results in long-lasting immunity may overcome the natural tendency of coronavirus immunity to wane quickly. Plant polysaccharides, glycosides, and glycoprotein extracts have reportedly been utilized as enticing adjuvants in experimental vaccines, such as Advax, Matrix-M, and Mistletoe lectin, which have been shown to be highly immunogenic and safe. When employed in vaccine formulation, Advax and Matrix-M generate long-lasting antibodies, a balanced robust Th1/Th2 cytokine profile, and the stimulation of cytotoxic T cells. Thus, the use of adjuvants derived from plants may increase the effectiveness of vaccines, resulting in the proper immunological response required to combat COVID-19. A few have been widely used in epidemic outbreaks, including SARS and H1N1 influenza, and their use could also improve the efficacy of COVID-19 vaccines. In this review, the immunological adjuvant properties of plant compounds as well as their potential application in anti-COVID-19 therapy are thoroughly discussed.
Collapse
Affiliation(s)
- Arbind Kumar
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Aashish Sharma
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Narendra Vijay Tirpude
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Yogendra Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| |
Collapse
|
3
|
Nwagwu CS, Ugwu CN, Ogbonna JDN, Onugwu AL, Agbo CP, Echezona AC, Ezeibe EN, Uzondu S, Kenechukwu FC, Akpa PA, Momoh MA, Nnamani PO, Tarirai C, Ofokansi KC, Attama AA. Recent and advanced nano-technological strategies for COVID-19 vaccine development. METHODS IN MICROBIOLOGY 2022; 50:151-188. [PMID: 38620863 PMCID: PMC9015106 DOI: 10.1016/bs.mim.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The outbreak of the COVID-19 pandemic in 2019 has been one of the greatest challenges modern medicine and science has ever faced. It has affected millions of people around the world and altered human life and activities as we once knew. The high prevalence as well as an extended period of incubations which usually does not present with symptoms have played a formidable role in the transmission and infection of millions. A lot of research has been carried out on developing suitable treatment and effective preventive measures for the control of the pandemic. Preventive strategies which include social distancing, use of masks, washing of hands, and contact tracing have been effective in slowing the spread of the virus; however, the infectious nature of the SARS-COV-2 has made these strategies unable to eradicate its spread. In addition, the continuous increase in the number of cases and death, as well as the appearance of several variants of the virus, has necessitated the development of effective and safe vaccines in a bid to ensure that human activities can return to normalcy. Nanotechnology has been of great benefit in the design of vaccines as nano-sized materials have been known to aid the safe and effective delivery of antigens as well as serve as suitable adjuvants to potentiate responses to vaccines. There are only four vaccine candidates currently approved for use in humans while many other candidates are at various levels of development. This review seeks to provide updated information on the current nano-technological strategies employed in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinenye Nnenna Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu state, Nigeria
| | - John Dike Nwabueze Ogbonna
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ezinwanne Nneoma Ezeibe
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu state, Nigeria
| | - Samuel Uzondu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Frankline Chimaobi Kenechukwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Paul Achile Akpa
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Mumuni Audu Momoh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Clemence Tarirai
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Kenneth Chibuzor Ofokansi
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
4
|
Agrawal PK, Agrawal C, Blunden G. Pharmacological Significance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Combating COVID-19. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211042540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hesperidin and hesperetin are flavonoids that are abundantly present as constituents of citrus fruits. These compounds have attracted attention as several computational methods, mostly docking studies, have shown that hesperidin may bind to multiple regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (spike protein, angiotensin-converting enzyme 2, and proteases). Hesperidin has a low binding energy, both with the SARS-CoV-2 “spike” protein responsible for internalization, and also with the “PLpro” and “Mpro” responsible for transforming the early proteins of the virus into the complex responsible for viral replication. This suggests that these flavonoids could act as prophylactic agents by blocking several mechanisms of viral infection and replication, and thus helping the host cell to resist viral attack.
Collapse
Affiliation(s)
| | | | - Gerald Blunden
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
5
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
6
|
Serafim MS, Gertrudes JC, Costa DM, Oliveira PR, Maltarollo VG, Honorio KM. Knowing and combating the enemy: a brief review on SARS-CoV-2 and computational approaches applied to the discovery of drug candidates. Biosci Rep 2021; 41:BSR20202616. [PMID: 33624754 PMCID: PMC7982772 DOI: 10.1042/bsr20202616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 01/18/2023] Open
Abstract
Since the emergence of the new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) at the end of December 2019 in China, and with the urge of the coronavirus disease 2019 (COVID-19) pandemic, there have been huge efforts of many research teams and governmental institutions worldwide to mitigate the current scenario. Reaching more than 1,377,000 deaths in the world and still with a growing number of infections, SARS-CoV-2 remains a critical issue for global health and economic systems, with an urgency for available therapeutic options. In this scenario, as drug repurposing and discovery remains a challenge, computer-aided drug design (CADD) approaches, including machine learning (ML) techniques, can be useful tools to the design and discovery of novel potential antiviral inhibitors against SARS-CoV-2. In this work, we describe and review the current knowledge on this virus and the pandemic, the latest strategies and computational approaches applied to search for treatment options, as well as the challenges to overcome COVID-19.
Collapse
Affiliation(s)
- Mateus S.M. Serafim
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Jadson C. Gertrudes
- Department of Computer Science, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Débora M.A. Costa
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Patricia R. Oliveira
- School of Arts, Sciences and Humanities, University of São Paulo (USP), 03828-000, São Paulo, SP, Brazil
| | - Vinicius G. Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Kathia M. Honorio
- School of Arts, Sciences and Humanities, University of São Paulo (USP), 03828-000, São Paulo, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, SP, Brazil
| |
Collapse
|
7
|
Rui R, Tian M, Tang ML, Ho GTS, Wu CH. Analysis of the Spread of COVID-19 in the USA with a Spatio-Temporal Multivariate Time Series Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E774. [PMID: 33477576 PMCID: PMC7831328 DOI: 10.3390/ijerph18020774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
With the rapid spread of the pandemic due to the coronavirus disease 2019 (COVID-19), the virus has already led to considerable mortality and morbidity worldwide, as well as having a severe impact on economic development. In this article, we analyze the state-level correlation between COVID-19 risk and weather/climate factors in the USA. For this purpose, we consider a spatio-temporal multivariate time series model under a hierarchical framework, which is especially suitable for envisioning the virus transmission tendency across a geographic area over time. Briefly, our model decomposes the COVID-19 risk into: (i) an autoregressive component that describes the within-state COVID-19 risk effect; (ii) a spatiotemporal component that describes the across-state COVID-19 risk effect; (iii) an exogenous component that includes other factors (e.g., weather/climate) that could envision future epidemic development risk; and (iv) an endemic component that captures the function of time and other predictors mainly for individual states. Our results indicate that maximum temperature, minimum temperature, humidity, the percentage of cloud coverage, and the columnar density of total atmospheric ozone have a strong association with the COVID-19 pandemic in many states. In particular, the maximum temperature, minimum temperature, and the columnar density of total atmospheric ozone demonstrate statistically significant associations with the tendency of COVID-19 spreading in almost all states. Furthermore, our results from transmission tendency analysis suggest that the community-level transmission has been relatively mitigated in the USA, and the daily confirmed cases within a state are predominated by the earlier daily confirmed cases within that state compared to other factors, which implies that states such as Texas, California, and Florida with a large number of confirmed cases still need strategies like stay-at-home orders to prevent another outbreak.
Collapse
Affiliation(s)
- Rongxiang Rui
- School of Statistics, Renmin University of China, Beijing 100872, China;
| | - Maozai Tian
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830011, China;
| | - Man-Lai Tang
- Department of Mathematics, Statistics and Insurance, Hang Seng University of Hong Kong, Hong Kong, China
| | - George To-Sum Ho
- Department of Supply Chain and Information Management, Hang Seng University of Hong Kong, Hong Kong, China; (G.T.-S.H.); (C.-H.W.)
| | - Chun-Ho Wu
- Department of Supply Chain and Information Management, Hang Seng University of Hong Kong, Hong Kong, China; (G.T.-S.H.); (C.-H.W.)
| |
Collapse
|