1
|
Tüz MA, Türköz İ, Aydogan O, Gencer E, Aygün-Kaş FÖ, Hunerel O, Tüz Hİ. Tocilizumab and IVIG experience during the service follow-up in patients with severe COVID-19 pneumonia. Rev Inst Med Trop Sao Paulo 2025; 67:e28. [PMID: 40243800 PMCID: PMC11996030 DOI: 10.1590/s1678-9946202567028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Most SARS-CoV-2 infections are asymptomatic or cause only mild illness, but severe respiratory disease can develop, sometimes requiring oxygen support. Immunopathological damage resulting from an abnormal inflammatory response in patients with severe disease is known to be the main determinant of disease outcome. Studies show that anti-inflammatory therapies work best when used before widespread immunopathological damage has occurred. Similarly, it was thought that intravenous immunoglobulin (IVIG)-holding multiple immunomodulatory effects-would provide clinically favorable results, but recent studies suggest otherwise. Still, the literature shows few studies evaluating the efficacy of IVIG according to the time of administration and there are no studies comparing it with established treatments, such as tocilizumab. In this study, we aimed to evaluate the effects of early administration of tocilizumab and IVIG on clinical outcome in patients with severe COVID-19. Patients with progressive clinical and laboratory deterioration who received tocilizumab or IVIG between 07/2020 and 10/2020 in a public hospital ward were retrospectively evaluated. A total of 74 patients were identified, of whom 29 (39%) received IVIG only and 26 (35%) received tocilizumab only. As a result, patients with severe COVID-19 who received IVIG in early stages of the disease did not have better clinical outcomes regarding mortality, length of hospital stay and ICU admission compared to those who received tocilizumab. Moreover, there is no data to support the use of IVIG in COVID-19 patients with severe disease, as it is associated with more severe side effects and is more expensive than tocilizumab.
Collapse
Affiliation(s)
- Mehmet Ali Tüz
- Balikesir University, Medical Faculty, Infectious Diseases and Clinical Microbiology Department, Balikesir, Turkey
| | - İsmail Türköz
- Dörtyol State Hospital, Infectious Diseases and Clinical Microbiology Department, Hatay, Turkey
| | - Oytun Aydogan
- Uzunmehmet Chest and Occupational Diseases Hospital, Department of Chest Diseases, Zonguldak, Turkey
| | - Emine Gencer
- Private Kapadokya Hospital, Department of Chest Diseases, Nevşehir, Turkey
| | - Fadime Özge Aygün-Kaş
- Zonguldak Atatürk State Hospital, Infectious Diseases and Clinical Microbiology Department, Zonguldak, Turkey
| | - Oylum Hunerel
- Urla State Hospital, Department of Chest Diseases, İzmir, Turkey
| | - Hande İdil Tüz
- Balıkesir Atatürk City Hospital, Infectious Diseases and Clinical Microbiology Department, Balıkesir, Turkey
| |
Collapse
|
2
|
Lundstrom K. Immunobiology and immunotherapy of COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:73-133. [PMID: 40246352 DOI: 10.1016/bs.pmbts.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The SARS-CoV-2 outbreak in late 2019 triggered a major increase in activities related to immunobiology and immunotherapy to cope with and find solutions to end the COVID-19 pandemic. The unprecedented approach to research and development of drugs and vaccines against SARS-CoV-2 has substantially improved the understanding of immunobiology for COVID-19, which can also be applied to other infectious diseases. Major efforts were dedicated to the repurposing of existing antiviral drugs and the development of novel ones. For this reason, numerous approaches to evaluating interferons, immunoglobulins, and cytokine inhibitors have been conducted. Antibody-based therapies, especially employing monoclonal antibodies have also been on the agenda. Cell-based therapies involving dendritic cells, macrophages, and CAR T-cell approaches have been evaluated. Many existing antiviral drugs have been repurposed for COVID-19 and novel formulations have been tested. The extraordinarily rapid development of efficient vaccines led to the breakthrough of novel vaccine approaches such as mRNA-based vaccines saving millions of lives. Waning immunity of existing vaccines and emerging SARS-CoV-2 variants have required additional booster vaccinations and re-engineering of new versions of COVID-19 vaccines.
Collapse
|
3
|
Morse BA, Motovilov K, Michael Brode W, Michael Tee F, Melamed E. A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome. Brain Behav Immun 2025; 123:725-738. [PMID: 39389388 DOI: 10.1016/j.bbi.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024] Open
Abstract
Intravenous immunoglobulin (IVIG) is an immunomodulatory therapy that has been studied in several neuroimmune conditions, such as Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and multiple sclerosis. It has also been proposed as a potential treatment option for acute COVID-19 infection and post-acute sequelae of SARS-CoV-2 infection (PASC). IVIG is thought to function by providing the recipient with a pool of antibodies, which can, in turn, modulate immune responses through multiple mechanisms including neutralization of cytokines and autoantibodies, saturation of neonatal fragment crystallizable receptors, inhibition of complement activation, and regulation of T and B cell mediated inflammation. In acute COVID-19, studies have shown that early administration of IVIG and plasmapheresis in severe cases can reduce the need for mechanical ventilation, shorten ICU and hospital stays, and lower mortality. Similarly, in PASC, while research is still in early stages, IVIG has been shown to alleviate persistent symptoms in small patient cohorts. Furthermore, IVIG has shown benefits in another condition which has symptomatic overlap with PASC, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), though studies have yielded mixed results. It is important to note that IVIG can be associated with several potential adverse effects, such as anaphylaxis, headaches, thrombosis, liver enzyme elevations and renal complications. In addition, the high cost of IVIG can be a deterrent for payers and patients. This review provides a comprehensive update on the use of IVIG in multiple neuroimmune conditions, ME/CFS, acute COVID-19, and PASC, as well as covers its history, production, pricing, and mechanisms of action. We also identify key areas of future research, including the need to optimize the use of Ig product dosing, timing, and patient selection across conditions, particularly in the context of COVID-19 and PASC.
Collapse
Affiliation(s)
- Brinkley A Morse
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - Katherine Motovilov
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA
| | - Francis Michael Tee
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA.
| | - Esther Melamed
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA.
| |
Collapse
|
4
|
Alwakeel M, Abi Fadel F, Nanah A, Wang Y, Awad MKA, Abdeljaleel F, Obeidat M, Saleem T, Afzal S, Alayan D, Harnegie MP, Wang X, Duggal A, Zhang P. Efficacy of COVID-19 Treatments in Intensive Care Unit: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit Care Res Pract 2024; 2024:2973795. [PMID: 39633779 PMCID: PMC11617054 DOI: 10.1155/ccrp/2973795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives: Examining the cumulative evidence from randomized controlled trials (RCTs), evaluating the use of pharmacological agents for the treatment of COVID-19 infections in patients with critical illness. Data Sources: Databases Medline, Embase, Web of Science, Scopus, CINAHL, and Cochrane. Study Selection: Inclusion criteria were RCTs that enrolled patients with confirmed or suspected COVID-19 infection who are critically ill. Only RCTs that examined therapeutic agents against one another or no intervention, placebo, or standard of care, were included. Data Extraction: Pairs of reviewers extracted data independently. Outcomes of interest included the overall reported mortality defined as either the ICU mortality, hospital mortality, mortality within 28 days or mortality within 90 days. Data Synthesis: A total of 40 studies (11,613 patients) evaluated 50 therapeutic intervention arms divided into five main therapy categories; steroids, antiviral medications, immunomodulators, plasma therapies [intravenous immunoglobulins (IVIG), convalescent plasma and/or, therapeutic plasma exchange], and therapeutic anticoagulation. Immunomodulators was the only group with possible mortality benefit, risk ratio (RR) 0.83 (95% CI 0.73; 0.95), with nonsignificant heterogeneity (I 2 = 8%, p=0.36). In contrast, the other therapy groups showed no significant impact on mortality, as indicated by their respective pooled RRs: steroids [RR 0.91 (95% CI 0.82; 1.01), I 2 = 31%], antiviral medications [RR 1.11 (95% CI 0.82; 1.49), I 2 = 57%], plasma therapies [RR 0.77 (95% CI 0.58; 1.01), I 2 = 36%], and anticoagulation [RR 1.06 (95% CI 0.95; 1.18), I 2 = 0%]. Conclusions: This meta-analysis highlights both the heterogeneity and a lack of benefit from therapies evaluated during the COVID-19 pandemic. Many of the RCTs were developed based on limited observational data. Future RCTs investigating pharmaceutical interventions in critically ill patients during pandemics need to be designed based on better evidence.
Collapse
Affiliation(s)
- Mahmoud Alwakeel
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Francois Abi Fadel
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Abdelrahman Nanah
- Department of Medicine, Cleveland Clinic Fairview Hospital, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Anesthesiology, Boston Medical Center, Boston, Massachusetts, USA
| | - Mohamed K. A. Awad
- Department of Pulmonary, Critical Care and Allergy, University of Alabama, Birmingham, Alabama, USA
| | - Fatima Abdeljaleel
- Department of Medicine, Cleveland Clinic Fairview Hospital, Cleveland, Ohio, USA
| | - Mohammed Obeidat
- Department of Medicine, Cleveland Clinic Fairview Hospital, Cleveland, Ohio, USA
| | - Talha Saleem
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Saira Afzal
- Department of Neurology, Cleveland Clinic Florida, Weston, Florida, USA
- Department of Internal Medicine, Cleveland Clinic Florida, Cleveland, USA
| | - Dina Alayan
- Department of Medicine, Cleveland Clinic Fairview Hospital, Cleveland, Ohio, USA
| | - Mary Pat Harnegie
- Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaofeng Wang
- Department of Qualitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Abhijit Duggal
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peng Zhang
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Mensky G, van Blydenstein A, Damelin J, Omar S. Use of intravenous immunoglobulin for the treatment of severe COVID-19 in the Chris Hani Baragwanath Academic Hospital intensive care unit, Johannesburg, South Africa. SOUTHERN AFRICAN JOURNAL OF CRITICAL CARE 2024; 40:e1897. [PMID: 39911208 PMCID: PMC11792588 DOI: 10.7196/sajcc.2024.v40i3.1897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/03/2024] [Indexed: 02/07/2025] Open
Abstract
Background COVID-19 infection has a variable clinical presentation, with a small subgroup of patients developing severe disease, requiring intensive care with mechanical ventilation, with an increased mortality rate. South Africa (SA) has experienced multiple waves of this pandemic, spanning the pre-vaccine and vaccine periods. The method and initiation of treatment is a debated topic, changing according to evolving research and the literature. The present study investigated the use of high-dose intravenous immunoglobulin (IVIg) as a salvage therapy after initial medical treatment failure. Objectives To compare disease progression among critically ill COVID-19 pneumonia patients receiving IVIg therapy with that in patients receiving standard of care (SoC), in respect of inflammation, organ dysfunction and oxygenation. Methods This was a single-centre, retrospective study of patients admitted to the intensive care unit (ICU) at Chris Hani Baragwanath Academic Hospital, Johannesburg, SA, during the pre-vaccine COVID-19 pandemic. Demographics, inflammatory markers (C-reactive protein (CRP)), organ function (Sequential Organ Failure Assessment (SOFA) score), oxygenation (ratio of partial pressure of oxygen in arterial blood to fraction of inspiratory oxygen (P/F ratio)), overall mortality and complications (nosocomial infections and thromboembolism) were recorded and compared. Results We included 113 eligible patients in the study. The IVIg cohort had a significantly lower initial P/F ratio than the SoC cohort (p=0.01), but the change in P/F ratio was similar (p=0.54). Initial CRP and changes in CRP were similar in the two groups (p=0.38 and p=0.75, respectively), as were initial SOFA score and changes in SOFA score (p=0.18 and p=0.08, respectively) and vasopressor dose on day 0 and day 5 (p=0.97 and p=0.93, respectively). Duration of mechanical ventilation did not differ significantly between the IVIg group and the SoC group (p=0.13). There were no significant differences in measured complications between the two groups. On univariate analysis, the relative risk of death was 1.6 times higher (95% confidence interval (CI) 1.1 - 2.3) in the IVIg group; however, a logistical regression model demonstrated that only a higher P/F ratio (odds ratio (OR) 0.991; 95% CI 0.983 - 0.997) and higher mean airway pressure (OR 1.283; 95% CI 1.026 - 1.604) were significantly associated with ICU mortality. Conclusion Use of IVIg in our study was directed at an older population, with significantly worse oxygenation. We found no evidence of adverse effects of immunoglobulin therapy; however, we found no benefit either. Only the P/F ratio and mean airway pressure independently predicted ICU mortality. Contribution of the study During the COVID-19 pandemic, treatment protocols changed in response to the evolving literature. Hospitals were faced with choosing a treatment modality that they believed at the time had benefit. Chris Hani Baragwanath Hospital in Johannesburg, South Africa (SA), incorporated IVIg into its treatment protocols for patients with severe COVID pneumonia requiring ICU admission. This study retrospectively analysed the use of IVIg therapy in the hope of creating a more robust understanding of its safety and efficacy as a treatment option for SA patients in the future.
Collapse
Affiliation(s)
- G Mensky
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A van Blydenstein
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Pulmonology, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand,
Johannesburg, South Africa
| | - J Damelin
- Critical Care, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - S Omar
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Critical Care, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Sulaiman A, Caturegli P. Falsely abnormal serum protein electrophoresis after administration of intravenous immunoglobulins (IVIG): A retrospective cohort study. Pract Lab Med 2024; 42:e00434. [PMID: 39634785 PMCID: PMC11616521 DOI: 10.1016/j.plabm.2024.e00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 10/13/2024] [Indexed: 12/07/2024] Open
Abstract
Intravenous immunoglobulin (IVIG) therapy, used in several neurologic, hematologic, immunologic and dermatologic conditions, is known to interfere with the results of some serum laboratory tests. We analyzed the potential interference of IVIG on serum protein electrophoresis (SPEP) by reviewing more than a decade of SPEP studies performed by the clinical immunology laboratory of the Johns Hopkins Hospital. Of the total 100,350 SPEP performed between January 1, 2013 and December 31, 2023, 395 contained the keyword IVIG in the pathologist report, contributed by 348 patients confirmed to have received IVIG by chart review. Of the 348 patients, 20 (6 %) had a M-spike on SPEP suggestive of monoclonal gammopathy, while 328 (94 %) did not have it. Of the 20 patients, 14 received IVIG within 30 days from the SPEP collection date, while 6 received beyond 30 days. Serum immunofixation electrophoresis (SIFE) and clinical follow up showed no evidence of monoclonal gammopathy in 5 of the 14 patients. Overall, this 11-year retrospective cohort study showed that 5 of 348 (1.4 %) patients treated with IVIG and tested by SPEP had a false M-spike, that is a spike not confirmed to be caused by a monoclonal gammopathy by subsequent studies. Although small, the false positive rate of 1.4 % suggests that integrating knowledge of recent IVIG administration into the pathologist report would reduce SPEP misdiagnosis.
Collapse
Affiliation(s)
- Andrew Sulaiman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrizio Caturegli
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Agafina A, Aguiar VC, Rossovskaya M, Fartoukh MS, Hajjar LA, Thiéry G, Timsit JF, Gordeev I, Protsenko D, Carbone J, Pellegrini R, Stadnik CMB, Avdeev S, Ferrer M, Heinz CC, Häder T, Langohr P, Bobenhausen I, Schüttrumpf J, Staus A, Ruehle M, Weissmüller S, Wartenburg-Demand A, Torres A. Efficacy and safety of trimodulin in patients with severe COVID-19: results from a randomised, placebo-controlled, double-blind, multicentre, phase II trial (ESsCOVID). Eur J Med Res 2024; 29:418. [PMID: 39138518 PMCID: PMC11321023 DOI: 10.1186/s40001-024-02008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Trimodulin (human polyvalent immunoglobulin [Ig] M ~ 23%, IgA ~ 21%, IgG ~ 56% preparation) has previously been associated with a lower mortality rate in a subpopulation of patients with severe community-acquired pneumonia on invasive mechanical ventilation (IMV) and with clear signs of inflammation. The hypothesis for the ESsCOVID trial was that trimodulin may prevent inflammation-driven progression of severe coronavirus disease 2019 (COVID-19) to critical disease or even death. METHODS Adults with severe COVID-19 were randomised to receive intravenous infusions of trimodulin or placebo for 5 consecutive days in addition to standard of care. The primary efficacy endpoint was a composite of clinical deterioration (Days 6-29) and 28-day all-cause mortality (Days 1-29). RESULTS One-hundred-and-sixty-six patients received trimodulin (n = 84) or placebo (n = 82). Thirty-three patients died, nine during the treatment phase. Overall, 84.9% and 76.5% of patients completed treatment and follow-up, respectively. The primary efficacy endpoint was reported in 33.3% of patients on trimodulin and 34.1% of patients on placebo (P = 0.912). No differences were observed in the proportion of patients recovered on Day 29, days of invasive mechanical ventilation, or intensive care unit-free days. Rates of treatment-emergent adverse events were comparable. A post hoc analysis was conducted in patients with early systemic inflammation by excluding those with high CRP (> 150 mg/L) and/or D-dimer (≥ 3 mg/L) and/or low platelet counts (< 130 × 109/L) at baseline. Forty-seven patients in the trimodulin group and 49 in the placebo group met these criteria. A difference of 15.5 percentage points in clinical deterioration and mortality was observed in favour of trimodulin (95% confidence interval: -4.46, 34.78; P = 0.096). CONCLUSION Although there was no difference in the primary outcome in the overall population, observations in a subgroup of patients with early systemic inflammation suggest that trimodulin may have potential in this setting that warrants further investigation. ESSCOVID WAS REGISTERED PROSPECTIVELY AT CLINICALTRIALS.GOV ON OCTOBER 6, 2020.: NCT04576728.
Collapse
Affiliation(s)
| | | | | | - Muriel Sarah Fartoukh
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Intensive Réanimation, Hôpital Tenon, and DMU APPROCHES, Sorbonne Université, Paris, France
| | - Ludhmila Abrahao Hajjar
- Instituto Do Coração InCor, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jean-François Timsit
- Medical and Infectious Diseases ICU (M12) APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | | | - Javier Carbone
- Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | | | | | - Sergey Avdeev
- First Moscow State Medical University, Moscow, Russia
| | - Miquel Ferrer
- Hospital Clinic of Barcelona, IDIBAPS, CibeRes (CB06/06/0028) University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Antoni Torres
- Respiratory and Intensive Care Unit, Hospital Clinic of Barcelona, IDIBAPS, CibeRes (CB06/06/0028), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Pei B, Yang H, Peng S. Renewed call for action: Highlight negative results to improve science. Clinics (Sao Paulo) 2024; 79:100426. [PMID: 38945114 PMCID: PMC11261298 DOI: 10.1016/j.clinsp.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Bo Pei
- Department of Oncology, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China; Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huiye Yang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shixuan Peng
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
9
|
Li MX, Li YF, Xing X, Niu JQ, Yao L, Lu MY, Guo K, Ma MN, Wu XT, Ma N, Li D, Li ZJ, Guan L, Wang XM, Pan B, Shang WR, Ji J, Song ZY, Zhang ZM, Wang YF, Yang KH. Intravenous immunoglobulin for treatment of hospitalized COVID-19 patients: an evidence mapping and meta-analysis. Inflammopharmacology 2024; 32:335-354. [PMID: 38097885 DOI: 10.1007/s10787-023-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND The clinical efficacy and safety of intravenous immunoglobulin (IVIg) treatment for COVID-19 remain controversial. This study aimed to map the current status and gaps of available evidence, and conduct a meta-analysis to further investigate the benefit of IVIg in COVID-19 patients. METHODS Electronic databases were searched for systematic reviews/meta-analyses (SR/MAs), primary studies with control groups, reporting on the use of IVIg in patients with COVID-19. A random-effects meta-analysis with subgroup analyses regarding study design and patient disease severity was performed. Our outcomes of interest determined by the evidence mapping, were mortality, length of hospitalization (days), length of intensive care unit (ICU) stay (days), number of patients requiring mechanical ventilation, and adverse events. RESULTS We included 34 studies (12 SR/MAs, 8 prospective and 14 retrospective studies). A total of 5571 hospitalized patients were involved in 22 primary studies. Random-effects meta-analyses of very low to moderate evidence showed that there was little or no difference between IVIg and standard care or placebo in reducing mortality (relative risk [RR] 0.91; 95% CI 0.78-1.06; risk difference [RD] 3.3% fewer), length of hospital (mean difference [MD] 0.37; 95% CI - 2.56, 3.31) and ICU (MD 0.36; 95% CI - 0.81, 1.53) stays, mechanical ventilation use (RR 0.92; 95% CI 0.68-1.24; RD 2.8% fewer), and adverse events (RR 0.98; 95% CI 0.84-1.14; RD 0.5% fewer) of patients with COVID-19. Sensitivity analysis using a fixed-effects model indicated that IVIg may reduce mortality (RR 0.76; 95% CI 0.60-0.97), and increase length of hospital stay (MD 0.68; 95% CI 0.09-1.28). CONCLUSION Very low to moderate certainty of evidence indicated IVIg may not improve the clinical outcomes of hospitalized patients with COVID-19. Given the discrepancy between the random- and fixed-effects model results, further large-scale and well-designed RCTs are warranted.
Collapse
Affiliation(s)
- Mei-Xuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Yan-Fei Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Xin Xing
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun-Qiang Niu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
- Department of Traditional Chinese Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liang Yao
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Meng-Ying Lu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ke Guo
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Mi-Na Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Xiao-Tian Wu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ning Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Dan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Zi-Jun Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Ling Guan
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiao-Man Wang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Bei Pan
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Wen-Ru Shang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
| | - Jing Ji
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Zhong-Yang Song
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Ming Zhang
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China.
| | | | - Ke-Hu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Evidence-Based Social Science Research Center, Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, China.
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Chen CJ, Kao HY, Huang CH, Li CJ, Hung CH, Yong SB. New insight into the intravenous immunoglobulin treatment in Multisystem Inflammatory Syndrome in children and adults. Ital J Pediatr 2024; 50:18. [PMID: 38273368 PMCID: PMC10809493 DOI: 10.1186/s13052-024-01585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024] Open
Abstract
Within 6 months of the coronavirus pandemic, a new disease entity associated with a multisystem hyperinflammation syndrome as a result of a previous infection with the SARS-CoV-2 virus is increasingly being identified in children termed Multisystem Inflammatory Syndrome in Children (MIS-C) and more recently in adults(MIS-A). Due to its clinical similarity with Kawasaki Disease, some institutions have used intravenous immunoglobulins and steroids as first line agents in the management of the disease. We seek to find how effective intravenous immunoglobulin therapy is across these two disease entities. A comprehensive English literature search was conducted across PubMed, MEDLINE, and EMBASE databases using the keywords multisystem inflammatory syndrome in children/adults and treatment. All major online libraries concerning the diagnosis and treatment of MIS-C and MIS-A were searched. Relevant papers were read, reviewed, and analyzed. The use of intravenous immunoglobulins (IVIG) and steroids for the treatment of multisystemic inflammatory syndrome in children(MIS-C) is well established and recommended by multiple pediatric governing institutions. However, there is still no optimal treatment guideline or consensus on the use of IVIG in adults. The use of IVIG in both the child and adult populations may lower the risk of treatment failure and the need for adjunctive immunomodulatory therapy. Despite the promising results of IVIG use for the management of MIS-C and MIS-A, considering the pathophysiological differences between MIS-C and MIS-A, healthcare professionals need to further assess the differences in disease risk and treatment. The optimal dose, frequency, and duration of treatment are still unknown, more research is needed to establish treatment guidelines.
Collapse
Affiliation(s)
- Chih-Jen Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsu-Yen Kao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Hua Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, 813, Kaohsiung, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, 804, Kaohsiung, Taiwan
| | - Cheng-Hsien Hung
- Department of Pharmacy, Chang Bing Show Chwan Memorial Hospital, 50544, No.6, Lugong Rd., Lukang Township, Changhua, Taiwan.
| | - Su-Boon Yong
- Department of Allergy and Immunology, China Medical University Children's Hospital, No. 2, Yuh‑Der Road, 404, Taichung City, Taiwan.
| |
Collapse
|
11
|
Schmidt C, Weißmüller S, Heinz CC. Multifaceted Tissue-Protective Functions of Polyvalent Immunoglobulin Preparations in Severe Infections-Interactions with Neutrophils, Complement, and Coagulation Pathways. Biomedicines 2023; 11:3022. [PMID: 38002022 PMCID: PMC10669904 DOI: 10.3390/biomedicines11113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Severe infections induce immune defense mechanisms and initial tissue damage, which produce an inflammatory neutrophil response. Upon dysregulation of these responses, inflammation, further tissue damage, and systemic spread of the pathogen may occur. Subsequent vascular inflammation and activation of coagulation processes may cause microvascular obstruction at sites distal to the primary site of infection. Low immunoglobulin (Ig) M and IgG levels have been detected in patients with severe infections like sCAP and sepsis, associated with increased severity and mortality. Based on Ig's modes of action, supplementation with polyvalent intravenous Ig preparations (standard IVIg or IgM/IgA-enriched Ig preparations) has long been discussed as a treatment option for severe infections. A prerequisite seems to be the timely administration of Ig preparations before excessive tissue damage has occurred and coagulopathy has developed. This review focuses on nonclinical and clinical studies that evaluated tissue-protective activities resulting from interactions of Igs with neutrophils, complement, and the coagulation system. The data indicate that coagulopathy, organ failure, and even death of patients can possibly be prevented by the timely combined interactions of (natural) IgM, IgA, and IgG with neutrophils and complement.
Collapse
Affiliation(s)
- Carolin Schmidt
- Department of Corporate Clinical Research and Development, Biotest AG, 63303 Dreieich, Germany
| | | | - Corina C Heinz
- Department of Corporate Clinical Research and Development, Biotest AG, 63303 Dreieich, Germany
| |
Collapse
|
12
|
Zeng B, Zhou J, Peng D, Dong C, Qin Q. The prevention and treatment of COVID-19 in patients treated with hemodialysis. Eur J Med Res 2023; 28:410. [PMID: 37814329 PMCID: PMC10563282 DOI: 10.1186/s40001-023-01389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
Patients treated with hemodialysis are often immunocompromised due to concomitant disease. As a result, this population is at high risk of infection and mortality from COVID-19. In addition to symptomatic treatment, a series of antiviral drugs targeting COVID-19 are now emerging. However, these antivirals are used mainly in mild or moderate patients with high-risk factors for progression to severe disease and are not available as pre- or post-exposure prophylaxis for COVID-19. There is a lack of clinical data on the use of anti-COVID-19 drugs, especially in patients treated with hemodialysis, therefore, vaccination remains the main measure to prevent SARS-CoV-2 infection in these patients. Here, we review the clinical features and prognosis of patients on hemodialysis infected with SARS-CoV-2, the main anti-COVID-19 drugs currently available for clinical use, and the safety and efficacy of anti-COVID-19 drugs or COVID-19 vaccination in patients treated with hemodialysis. This information will provide a reference for the treatment and vaccination of COVID-19 in patients treated with hemodialysis and maximize the health benefits of these patients during the outbreak.
Collapse
Affiliation(s)
- Binyu Zeng
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Jia Zhou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Daizhuang Peng
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Chengmei Dong
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Qun Qin
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China.
| |
Collapse
|
13
|
Liu M, Liang Z, Cheng ZJ, Liu L, Liu Q, Mai Y, Chen H, Lei B, Yu S, Chen H, Zheng P, Sun B. SARS-CoV-2 neutralising antibody therapies: Recent advances and future challenges. Rev Med Virol 2023; 33:e2464. [PMID: 37322826 DOI: 10.1002/rmv.2464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic represents an unparalleled global public health crisis. Despite concerted research endeavours, the repertoire of effective treatment options remains limited. However, neutralising-antibody-based therapies hold promise across an array of practices, encompassing the prophylaxis and management of acute infectious diseases. Presently, numerous investigations into COVID-19-neutralising antibodies are underway around the world, with some studies reaching clinical application stages. The advent of COVID-19-neutralising antibodies signifies the dawn of an innovative and promising strategy for treatment against SARS-CoV-2 variants. Comprehensively, our objective is to amalgamate contemporary understanding concerning antibodies targeting various regions, including receptor-binding domain (RBD), non-RBD, host cell targets, and cross-neutralising antibodies. Furthermore, we critically examine the prevailing scientific literature supporting neutralising antibody-based interventions, and also delve into the functional evaluation of antibodies, with a particular focus on in vitro (vivo) assays. Lastly, we identify and consider several pertinent challenges inherent to the realm of COVID-19-neutralising antibody-based treatments, offering insights into potential future directions for research and development.
Collapse
Affiliation(s)
- Mingtao Liu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiman Liang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Guangzhou Medical University, Guangzhou, China
| | - Qiwen Liu
- Guangzhou Medical University, Guangzhou, China
| | - Yiyin Mai
- Guangzhou Medical University, Guangzhou, China
| | | | - Baoying Lei
- Guangzhou Medical University, Guangzhou, China
| | - Shangwei Yu
- Guangzhou Medical University, Guangzhou, China
| | - Huihui Chen
- Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Gomez F, Mehra A, Ensrud E, Diedrich D, Laudanski K. COVID-19: a modern trigger for Guillain-Barre syndrome, myasthenia gravis, and small fiber neuropathy. Front Neurosci 2023; 17:1198327. [PMID: 37712090 PMCID: PMC10498773 DOI: 10.3389/fnins.2023.1198327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023] Open
Abstract
COVID-19 infection has had a profound impact on society. During the initial phase of the pandemic, there were several suggestions that COVID-19 may lead to acute and protracted neurologic sequelae. For example, peripheral neuropathies exhibited distinctive features as compared to those observed in critical care illness. The peripheral nervous system, lacking the protection afforded by the blood-brain barrier, has been a particular site of sequelae and complications subsequent to COVID-19 infection, including Guillain-Barre syndrome, myasthenia gravis, and small fiber neuropathy. We will discuss these disorders in terms of their clinical manifestations, diagnosis, and treatment as well as the pathophysiology in relation to COVID-19.
Collapse
Affiliation(s)
- Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Ashir Mehra
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Erik Ensrud
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN, United States
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Li CC, Munalisa R, Lee HY, Lien TS, Chan H, Hung SC, Sun DS, Cheng CF, Chang HH. Restraint Stress-Induced Immunosuppression Is Associated with Concurrent Macrophage Pyroptosis Cell Death in Mice. Int J Mol Sci 2023; 24:12877. [PMID: 37629059 PMCID: PMC10454201 DOI: 10.3390/ijms241612877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Psychological stress is widely acknowledged as a major contributor to immunosuppression, rendering individuals more susceptible to various diseases. The complex interplay between the nervous, endocrine, and immune systems underlies stress-induced immunosuppression. However, the underlying mechanisms of psychological-stress-induced immunosuppression remain unclear. In this study, we utilized a restraint stress mouse model known for its suitability in investigating physiological regulations during psychological stress. Comparing it with cold exposure, we observed markedly elevated levels of stress hormones corticosterone and cortisol in the plasma of mice subjected to restraint stress. Furthermore, restraint-stress-induced immunosuppression differed from the intravenous immunoglobulin-like immunosuppression observed in cold exposure, with restraint stress leading to increased macrophage cell death in the spleen. Suppression of pyroptosis through treatments of inflammasome inhibitors markedly ameliorated restraint-stress-induced spleen infiltration and pyroptosis cell death of macrophages in mice. These findings suggest that the macrophage pyroptosis associated with restraint stress may contribute to its immunosuppressive effects. These insights have implications for the development of treatments targeting stress-induced immunosuppression, emphasizing the need for further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan;
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Rina Munalisa
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hsuan-Yun Lee
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hao Chan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Shih-Che Hung
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| |
Collapse
|
16
|
McCarthy MW. Intravenous immunoglobulin as a potential treatment for long COVID. Expert Opin Biol Ther 2023; 23:1211-1217. [PMID: 38100573 DOI: 10.1080/14712598.2023.2296569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION On 31 July 2023, the United States Department of Health and Human Services announced the formation of the Office of Long COVID Research and Practice and the United States National Institutes of Health (NIH) opened enrollment for the therapeutic arm of the RECOVER initiative, a prospective, randomized study to evaluate new treatment options for long coronavirus disease 2019 (long COVID). AREAS COVERED One of the first drugs to be studied in this nationwide initiative is intravenous immunoglobulin (IVIG), which will be a treatment option for subjects enrolled in RECOVER-AUTO, a randomized trial to investigate therapeutic strategies for autonomic dysfunction related to long COVID. EXPERT OPINION IVIG is a mixture of human antibodies (human immunoglobulin) that has been widely used to treat a variety of diseases, including immune thrombocytopenia purpura, Kawasaki disease, chronic inflammatory demyelinating polyneuropathy, and certain infections such as influenza, human immunodeficiency virus, and measles. However, the role of IVIG in the treatment of post-COVID-19 conditions is uncertain. This manuscript examines what is known about IVIG in the treatment of long COVID and explores how this therapeutic agent may be used in the future to address this condition.
Collapse
|
17
|
Song H, Lei N, Zeng L, Li X, Jiang C, Feng Q, Su Y, Liu J, Mu J. Mendelian randomization analysis identified tumor necrosis factor as being associated with severe COVID-19. Front Pharmacol 2023; 14:1171404. [PMID: 37397483 PMCID: PMC10311560 DOI: 10.3389/fphar.2023.1171404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Observational studies have shown that anti-tumor necrosis factor (TNF) therapy may be beneficial for patients with coronavirus disease 2019 (COVID-19). Nevertheless, because of the methodological restrictions of traditional observational studies, it is a challenge to make causal inferences. This study involved a two-sample Mendelian randomization analysis to investigate the causal link between nine TNFs and COVID-19 severity using publicly released genome-wide association study summary statistics. Methods: Summary statistics for nine TNFs (21,758 cases) were obtained from a large-scale genome-wide association study. Correlation data between single-nucleotide polymorphisms and severe COVID-19 (18,152 cases vs. 1,145,546 controls) were collected from the COVID-19 host genetics initiative. The causal estimate was calculated by inverse variance-weighted (IVW), MR-Egger, and weighted median methods. Sensitivity tests were conducted to assess the validity of the causal relationship. Results: Genetically predicted TNF receptor superfamily member 6 (FAS) positively correlated with the severity of COVID-19 (IVW, odds ratio = 1.10, 95% confidence interval = 1.01-1.19, p = 0.026), whereas TNF receptor superfamily member 5 (CD40) was protective against severe COVID-19 (IVW, odds ratio = 0.92, 95% confidence interval = 0.87-0.97, p = 0.002). Conclusion: Genetic evidence from this study supports that the increased expression of FAS is associated with the risk of severe COVID-19 and that CD40 may have a potential protective effect against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yue Su
- Traditional Chinese Medicine and Inflammation Regulation Research Group, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- Traditional Chinese Medicine and Inflammation Regulation Research Group, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Mu
- Traditional Chinese Medicine and Inflammation Regulation Research Group, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
19
|
Bai F, Pu J, Che W, Chen J, Chen M, Chen W, Chen X, Chen Y, Cheng X, Cheng X, Cong H, Dai C, Fan D, Fu G, Gao L, Gao C, Gao W, Ge J, He B, Hu T, Huang C, Huang J, Huo Y, Jia S, Jiang J, Jing Z, Kong X, Li L, Li Y, Li Y, Li Z, Liang C, Lin X, Liu X, Liu X, Lu C, Ma G, Ma Y, Mao W, Mei X, Ning Z, Ou J, Slaj S, Shen C, Shi H, Shi H, Shi B, Su X, Sun N, Tang Q, Wang F, Wang C, Wang J, Wu Y, Wu Y, Xia Y, Xiang D, Xiao P, Xie P, Xiong D, Xu Y, Yang J, Yang L, Yu Z, Yuan Z, Yuan H, Zhang G, Zhang H, Zhang J, Zhang L, Zhang R, Zhang S, Zhang S, Zhang Z, Zhao G, Zhao X, Zheng J, Zheng H, Zhou D, Zhou S, Zhou Y. 2023 Chinese expert consensus on the impact of COVID-19 on the management of cardiovascular diseases. CARDIOLOGY PLUS 2023; 8:82-102. [PMID: 37486153 PMCID: PMC10358441 DOI: 10.1097/cp9.0000000000000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/14/2023] [Indexed: 07/25/2023] Open
Abstract
The primary site of infection in COVID-19 exhibit is the respiratory system, but multiple organ systems could be affected. The virus could directly invade cardiomyocytes. Alternatively, cytokine storm could lead to myocardial injury. More importantly, the management of existing cardiovascular diseases must be re-examined in COVID-19 due to, for example, interaction between antiviral agents and with a wide variety of pharmacological agents. The Branch of Cardiovascular Physicians of Chinese Medical Doctor Association organized a panel of experts in cardiovascular and related fields to discuss this important issue, and formulated the "2023 Chinese Expert Consensus on the Impact of COVID-19 on the Management of Cardiovascular Diseases." The Consensus was drafted on the basis of systematic review of existing evidence and diagnosis and treatment experience, and covers three major aspects: myocardial injury caused by COVID-10 and COVID-19 vaccine, the impact of COVID-19 on patients with cardiovascular disease, and the impact of COVID-19 on the cardiovascular system of healthy people, and rehabilitation guidance recommendations. The Consensus involves 11 core clinical issues, including incidence, pathogenesis, clinical manifestations, treatment strategies, prognosis, and rehabilitation. It is our hope that this Consensus will provide a practical guidance to cardiologists in the management of cardiovascular diseases in the new era of COVID-19 pandemic.
Collapse
|
20
|
Liu X, Zhang Y, Lu L, Li X, Wu Y, Yang Y, Li T, Cao W. Benefits of high-dose intravenous immunoglobulin on mortality in patients with severe COVID-19: An updated systematic review and meta-analysis. Front Immunol 2023; 14:1116738. [PMID: 36756131 PMCID: PMC9900022 DOI: 10.3389/fimmu.2023.1116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Background The clinical benefits of high-dose intravenous immunoglobulin (IVIg) in treating COVID-19 remained controversial. Methods We systematically searched databases up to February 17, 2022, for studies examining the efficacy of IVIg compared to routine care. Meta-analyses were conducted using the random-effects model. Subgroup analysis, meta-regression, and trial series analysis w ere performed to explore heterogeneity and statistical significance. Results A total of 4,711 hospitalized COVID-19 patients (1,925 IVIg treated and 2786 control) were collected from 17 studies, including five randomized controlled trials (RCTs) and 12 cohort studies. The application of IVIg was not associated with all-cause mortality (RR= 0.89 [0.63, 1.26], P= 0.53; I2 = 75%), the length of hospital stays (MD= 0.29 [-3.40, 6.44] days, P= 0.88; I2 = 96%), the needs for mechanical ventilation (RR= 0.93 ([0.73, 1.19], P= 0.31; I2 = 56%), or the incidence of adverse events (RR= 1.15 [0.99, 1.33], P= 0.06; I2 = 20%). Subgroup analyses showed that overall mortality among patients with severe COVID-19 was reduced in the high-dose IVIg subgroup (RR= 0.33 [0.13, 0.86], P= 0.02, I2 = 68%; very low certainty). Conclusions Results of this study suggest that severe hospitalized COVID-19 patients treated with high-dose IVIg would have a lower risk of death than patients with routine care. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021231040, identifier CRD42021231040.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuelun Zhang
- Medical research center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodi Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanni Wu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Wei Cao,
| |
Collapse
|