1
|
Kell DB, Pretorius E. The Proteome Content of Blood Clots Observed Under Different Conditions: Successful Role in Predicting Clot Amyloid(ogenicity). Molecules 2025; 30:668. [PMID: 39942772 PMCID: PMC11820299 DOI: 10.3390/molecules30030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
A recent analysis compared the proteome of (i) blood clots seen in two diseases-sepsis and long COVID-when blood was known to have clotted into an amyloid microclot form (as judged by staining with the fluorogenic amyloid stain thioflavin T) with (ii) that of those non-amyloid clots considered to have formed normally. Such fibrinaloid microclots are also relatively resistant to fibrinolysis. The proteins that the amyloid microclots contained differed markedly both from the soluble proteome of typical plasma and that of normal clots, and also between the diseases studied (an acute syndrome in the form of sepsis in an ITU and a chronic disease represented by Long COVID). Many proteins in the amyloid microclots were low in concentration in plasma and were effectively accumulated into the fibres, whereas many other abundant plasma proteins were excluded. The proteins found in the microclots associated with the diseases also tended to be themselves amyloidogenic. We here ask effectively the inverse question. This is: can the clot proteome tell us whether the clots associated with a particular disease contained proteins that are observed uniquely (or are highly over-represented) in known amyloid clots relative to normal clots, and thus were in fact amyloid in nature? The answer is in the affirmative in a variety of major coagulopathies, viz., venous thromboembolism, pulmonary embolism, deep vein thrombosis, various cardiac issues, and ischaemic stroke. Galectin-3-binding protein and thrombospondin-1 seem to be especially widely associated with amyloid-type clots, and the latter has indeed been shown to be incorporated into growing fibrin fibres. These may consequently provide useful biomarkers with a mechanistic basis.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
2
|
Smit ER, Kreft IC, Camilleri E, Burggraaf-van Delft JLI, van Rein N, van Vlijmen BJ, Hulshof AM, van Bussel BC, van Rosmalen F, van der Zwaan C, van de Berg T, Henskens Y, ten Cate H, Coutinho JM, Kruip MJ, Eikenboom JJ, Hoogendijk AJ, Cannegieter SC, van den Biggelaar M. Exploration of the plasma proteomic profile of patients at risk of thromboembolic events. Res Pract Thromb Haemost 2025; 9:102713. [PMID: 40224277 PMCID: PMC11986537 DOI: 10.1016/j.rpth.2025.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 04/15/2025] Open
Abstract
Background The elevated health burden of thromboembolic events necessitates development of blood-based risk monitoring tools. Objectives We explored the potential of mass spectrometry-based plasma proteomics to provide insights into underlying plasma protein signatures associated with treatment and occurrence of thromboembolic events. Methods Utilizing a high-throughput, data-independent acquisition, discovery-based proteomics workflow, we analyzed 434 plasma proteomes from different groups of individuals with elevated risk of thromboembolic events, including individuals I) on vitamin K antagonists (VKAs; n = 130), II) with a prior venous thromboembolism (n = 10), III) with acute cerebral venous sinus thrombosis (n = 10, and IV) with SARS-CoV-2 infection (n = 67). Plasma protein levels measured with mass spectrometry were correlated with international normalized ratio and conventional clinical laboratory measurements. Plasma profile differences between different groups were assessed using principal component analysis, moderated t-test, and clustering analysis. Results Plasma protein levels were in agreement with conventional clinical laboratory parameters, including albumin and fibrinogen. Levels of vitamin K-dependent proteins inversely correlated with international normalized ratio. In the individual studies, we found decreased levels of vitamin K-dependent coagulation proteins in patients on VKAs, alterations in inflammatory signatures among CVST patients and a distinctive signature indicative of SARS-CoV-2 infection. However, no protein signature associated with a thromboembolic event could be identified neither in individual nor combined studies. Conclusion Although VKA treatment-specific and disease-specific signatures were captured, our study highlights that the challenges of discovering biomarkers in patients at risk of thromboembolic events lie in the heterogeneity of individual plasma profiles in relation to treatment and etiology.
Collapse
Affiliation(s)
- Eva R. Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Iris C. Kreft
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Eleonora Camilleri
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nienke van Rein
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J.M. van Vlijmen
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Marije Hulshof
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bas C.T. van Bussel
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Frank van Rosmalen
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Tom van de Berg
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yvonne Henskens
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hugo ten Cate
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jonathan M. Coutinho
- Department of Neurology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke J.H.A. Kruip
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen J.C. Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Arie J. Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
3
|
Camilleri E, Kruijt M, den Exter PL, Cannegieter SC, van Rein N, Cobbaert CM, van Vlijmen BJM, Ruhaak LR. Quantitative protein mass spectrometry for multiplex measurement of coagulation and fibrinolytic proteins towards clinical application: What, why and how? Thromb Res 2024; 241:109090. [PMID: 39032389 DOI: 10.1016/j.thromres.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Plasma proteins involved in coagulation and fibrinolysis are essential to hemostasis. Consequently, their circulating levels and functionality are critical in bleeding and thrombosis development. Well-established laboratory tests to assess these are available; however, said tests do not allow high multiplicity, require large volumes of plasma and are often costly. A novel technology to quantify plasma proteins is quantitative protein mass spectrometry (QPMS). Aided by stable isotope-labeled internal standards a large number of proteins can be quantified in one single analytical run requiring <30 μL of plasma. This provides an opportunity to improve insight in the etiology and prognosis of bleeding and thrombotic disorders, in which the balance between different proteins plays a crucial role. This manuscript aims to give an overview of the QPMS potential applications in thrombosis and hemostasis research (quantifying the 38 proteins assigned to coagulation and fibrinolysis by the KEGG database), but also to explore the potential and hurdles if designed for clinical practice. Advantages and limitations of QPMS are described and strategies for improved analysis are proposed, using as an example the test requirements for antithrombin. Application of this technology in the future could represent a step towards individualized patient care.
Collapse
Affiliation(s)
- Eleonora Camilleri
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mirjam Kruijt
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul L den Exter
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne C Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Nienke van Rein
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pharmacy, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart J M van Vlijmen
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Wang J, Ho P, Nandurkar H, Lim HY. Overall haemostatic potential assay for prediction of outcomes in venous and arterial thrombosis and thrombo-inflammatory diseases. J Thromb Thrombolysis 2024; 57:852-864. [PMID: 38649560 DOI: 10.1007/s11239-024-02975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Thromboembolic diseases including arterial and venous thrombosis are common causes of morbidity and mortality globally. Thrombosis frequently recurs and can also complicate many inflammatory conditions through the process of 'thrombo-inflammation,' as evidenced during the COVID-19 pandemic. Current candidate biomarkers for thrombosis prediction, such as D-dimer, have poor predictive efficacy. This limits our capacity to tailor anticoagulation duration individually and may expose lower risk individuals to undue bleeding risk. Global coagulation assays, such as the Overall Haemostatic Potential (OHP) assay, that investigate fibrin generation and fibrinolysis, may provide a more accurate and functional assessment of hypercoagulability. We present a review of fibrin's critical role as a central modulator of thrombotic risk. The results of our studies demonstrating the OHP assay as a predictive biomarker in venous thromboembolism, chronic renal disease, diabetes mellitus, post-thrombotic syndrome, and COVID-19 are discussed. As a comprehensive and global measurement of fibrin generation and fibrinolytic capacity, the OHP assay may be a valuable addition to future multi-modal predictive tools in thrombosis.
Collapse
Affiliation(s)
- Julie Wang
- Northern Health, 185 Cooper St, Epping, VIC, 3076, Australia.
| | - Prahlad Ho
- Northern Health, 185 Cooper St, Epping, VIC, 3076, Australia
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash Health, Melbourne, Australia
| | - Hui Yin Lim
- Northern Health, 185 Cooper St, Epping, VIC, 3076, Australia
| |
Collapse
|
5
|
Turizo MJF, Patell R, Zwicker JI. Identifying novel biomarkers using proteomics to predict cancer-associated thrombosis. BLEEDING, THROMBOSIS AND VASCULAR BIOLOGY 2024; 3:120. [PMID: 38828226 PMCID: PMC11143428 DOI: 10.4081/btvb.2024.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 06/05/2024]
Abstract
Comprehensive protein analyses of plasma are made possible by high-throughput proteomic screens, which may help find new therapeutic targets and diagnostic biomarkers. Patients with cancer are frequently affected by venous thromboembolism (VTE). The limited predictive accuracy of current VTE risk assessment tools highlights the need for new, more targeted biomarkers. Although coagulation biomarkers for the diagnosis, prognosis, and treatment of VTE have been investigated, none of them have the necessary clinical validation or diagnostic accuracy. Proteomics holds the potential to uncover new biomarkers and thrombotic pathways that impact the risk of thrombosis. This review explores the fundamental methods used in proteomics and focuses on particular biomarkers found in VTE and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Maria J Fernandez Turizo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Rushad Patell
- Division of Medical Oncology and Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jeffrey I Zwicker
- Department of Medicine, Hematology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weil Cornell Medical College, New York, NY, United States
| |
Collapse
|
6
|
Tawil N, Mohammadnia A, Rak J. Oncogenes and cancer associated thrombosis: what can we learn from single cell genomics about risks and mechanisms? Front Med (Lausanne) 2023; 10:1252417. [PMID: 38188342 PMCID: PMC10769496 DOI: 10.3389/fmed.2023.1252417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Single cell analysis of cancer cell transcriptome may shed a completely new light on cancer-associated thrombosis (CAT). CAT causes morbid, and sometimes lethal complications in certain human cancers known to be associated with high risk of venous thromboembolism (VTE), pulmonary embolism (PE) or arterial thromboembolism (ATE), all of which worsen patients' prognosis. How active cancers drive these processes has long evaded scrutiny. While "unspecific" microenvironmental effects and consequences of patient care (e.g., chemotherapy) have been implicated in pathogenesis of CAT, it has also been suggested that oncogenic pathways driven by either genetic (mutations), or epigenetic (methylation) events may influence the coagulant phenotype of cancer cells and stroma, and thereby modulate the VTE/PE risk. Consequently, the spectrum of driver events and their downstream effector mechanisms may, to some extent, explain the heterogeneity of CAT manifestations between cancer types, molecular subtypes, and individual cases, with thrombosis-promoting, or -protective mutations. Understanding this molecular causation is important if rationally designed countermeasures were to be deployed to mitigate the clinical impact of CAT in individual cancer patients. In this regard, multi-omic analysis of human cancers, especially at a single cell level, has brought a new meaning to concepts of cellular heterogeneity, plasticity, and multicellular complexity of the tumour microenvironment, with profound and still relatively unexplored implications for the pathogenesis of CAT. Indeed, cancers may contain molecularly distinct cellular subpopulations, or dynamic epigenetic states associated with different profiles of coagulant activity. In this article we discuss some of the relevant lessons from the single cell "omics" and how they could unlock new potential mechanisms through which cancer driving oncogenic lesions may modulate CAT, with possible consequences for patient stratification, care, and outcomes.
Collapse
Affiliation(s)
- Nadim Tawil
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Abdulshakour Mohammadnia
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Rue University, Montreal, QC, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|