1
|
Sáez PJ, Villalobos-Labra R, Westermeier F, Sobrevia L, Farías-Jofré M. Modulation of endothelial cell migration by ER stress and insulin resistance: a role during maternal obesity? Front Pharmacol 2014; 5:189. [PMID: 25191269 PMCID: PMC4137259 DOI: 10.3389/fphar.2014.00189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/24/2014] [Indexed: 12/15/2022] Open
Abstract
Adverse microenvironmental stimuli can trigger the endoplasmic reticulum (ER) stress pathway, which initiates the unfolded protein response (UPR), to restore protein-folding homeostasis. Several studies show induction of ER stress during obesity. Chronic UPR has been linked to different mechanisms of disease in obese and diabetic individuals, including insulin resistance (IR) and impaired angiogenesis. Endothelial cell (EC) migration is an initial step for angiogenesis, which is associated with remodeling of existing blood vessels. EC migration occurs according to the leader–follower model, involving coordinated processes of chemotaxis, haptotaxis, and mechanotaxis. Thus, a fine-tuning of EC migration is necessary to provide the right timing to form the required vessels during angiogenesis. ER stress modulates EC migration at different levels, usually impairing migration and angiogenesis, although different effects may be observed depending on the tissue and/or microenvironment. In the context of pregnancy, maternal obesity (MO) induces IR in the offspring. Interestingly, several proteins associated with obesity-induced IR are also involved in EC migration, providing a potential link with the ER stress-dependent alterations observed in obese individuals. Different signaling cascades that converge on cytoskeleton regulation directly impact EC migration, including the Akt and/or RhoA pathways. In addition, ER is the main intracellular reservoir for Ca2+, which plays a pivotal role during EC migration. Therefore, ER stress-related alterations in Ca2+ signaling or Ca2+ levels might also produce distorted EC migration. However, the above findings have been studied in the context of adult obesity, and no information has been reported regarding the effect of MO on fetal EC migration. Here we summarize the state of knowledge about the possible mechanisms by which ER stress and IR might impact EC migration and angiogenesis in fetal endothelium exposed to MO during pregnancy.
Collapse
Affiliation(s)
- Pablo J Sáez
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Francisco Westermeier
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile ; Facultad de Ciencia, Universidad San Sebastián Santiago, Chile ; Advanced Center for Chronic Diseases, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, University of Chile Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile ; University of Queensland Centre for Clinical Research, Faculty of Medicine and Biomedical Sciences, University of Queensland Herston, QL, Australia ; Faculty of Pharmacy, Universidad de Sevilla Sevilla, Spain
| | - Marcelo Farías-Jofré
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
2
|
Cross BM, Breitwieser GE, Reinhardt TA, Rao R. Cellular calcium dynamics in lactation and breast cancer: from physiology to pathology. Am J Physiol Cell Physiol 2013; 306:C515-26. [PMID: 24225884 DOI: 10.1152/ajpcell.00330.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is the second leading cause of cancer mortality in women, estimated at nearly 40,000 deaths and more than 230,000 new cases diagnosed in the U.S. this year alone. One of the defining characteristics of breast cancer is the radiographic presence of microcalcifications. These palpable mineral precipitates are commonly found in the breast after formation of a tumor. Since free Ca(2+) plays a crucial role as a second messenger inside cells, we hypothesize that these chelated precipitates may be a result of dysregulated Ca(2+) secretion associated with tumorigenesis. Transient and sustained elevations of intracellular Ca(2+) regulate cell proliferation, apoptosis and cell migration, and offer numerous therapeutic possibilities in controlling tumor growth and metastasis. During lactation, a developmentally determined program of gene expression controls the massive transcellular mobilization of Ca(2+) from the blood into milk by the coordinated action of calcium transporters, including pumps, channels, sensors and buffers, in a functional module that we term CALTRANS. Here we assess the evidence implicating genes that regulate free and buffered Ca(2+) in normal breast epithelium and cancer cells and discuss mechanisms that are likely to contribute to the pathological characteristics of breast cancer.
Collapse
Affiliation(s)
- Brandie M Cross
- Department of Physiology, The Johns Hopkins University, Baltimore, Maryland
| | | | | | | |
Collapse
|