1
|
Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine. World J Stem Cells 2024; 16:410-433. [PMID: 38690517 PMCID: PMC11056638 DOI: 10.4252/wjsc.v16.i4.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated β-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS Analysis of pluripotent gene markers Oct4, Sox2, and Nanog in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of Pax6, BMP2, and TGFb1 showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase (P < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and β-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
Collapse
Affiliation(s)
- Shafiqa Naeem Rajput
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Bushra Kiran Naeem
- Surgical Unit 4, Dr. Ruth KM Pfau Civil Hospital, Karachi 74400, Pakistan
| | - Anwar Ali
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
- Center for Regenerative Medicine and Stem Cells Research, and Department of Ophthalmology and Visual Sciences, The Aga Khan University, Karachi 74800, Sindh, Pakistan.
| |
Collapse
|
2
|
Ali ASM, Berg J, Roehrs V, Wu D, Hackethal J, Braeuning A, Woelken L, Rauh C, Kurreck J. Xeno-Free 3D Bioprinted Liver Model for Hepatotoxicity Assessment. Int J Mol Sci 2024; 25:1811. [PMID: 38339088 PMCID: PMC10855587 DOI: 10.3390/ijms25031811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Three-dimensional (3D) bioprinting is one of the most promising methodologies that are currently in development for the replacement of animal experiments. Bioprinting and most alternative technologies rely on animal-derived materials, which compromises the intent of animal welfare and results in the generation of chimeric systems of limited value. The current study therefore presents the first bioprinted liver model that is entirely void of animal-derived constituents. Initially, HuH-7 cells underwent adaptation to a chemically defined medium (CDM). The adapted cells exhibited high survival rates (85-92%) after cryopreservation in chemically defined freezing media, comparable to those preserved in standard medium (86-92%). Xeno-free bioink for 3D bioprinting yielded liver models with high relative cell viability (97-101%), akin to a Matrigel-based liver model (83-102%) after 15 days of culture. The established xeno-free model was used for toxicity testing of a marine biotoxin, okadaic acid (OA). In 2D culture, OA toxicity was virtually identical for cells cultured under standard conditions and in CDM. In the xeno-free bioprinted liver model, 3-fold higher concentrations of OA than in the respective monolayer culture were needed to induce cytotoxicity. In conclusion, this study describes for the first time the development of a xeno-free 3D bioprinted liver model and its applicability for research purposes.
Collapse
Affiliation(s)
- Ahmed S. M. Ali
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Viola Roehrs
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | | | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Lisa Woelken
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, 14195 Berlin, Germany (C.R.)
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, 14195 Berlin, Germany (C.R.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
3
|
Wang Y, Wu J, Chen J, Lu C, Liang J, Shan Y, Liu J, Li Q, Miao L, He M, Wang X, Zhang J, Wu Z. Mesenchymal stem cells paracrine proteins from three-dimensional dynamic culture system promoted wound healing in third-degree burn models. Bioeng Transl Med 2023; 8:e10569. [PMID: 38023693 PMCID: PMC10658564 DOI: 10.1002/btm2.10569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 12/01/2023] Open
Abstract
Recovery of skin function remains a significant clinical challenge for deep burns owing to the severe scar formation and poor appendage regeneration, and stem cell therapy has shown great potential for injured tissue regeneration. Here, a cell-free therapy system for deep burn skin was explored using mesenchymal stem cell paracrine proteins (MSC-PP) and polyethylene glycol (PEG) temperature-sensitive hydrogels. A three-dimensional (3D) dynamic culture system for MSCs' large-scale expansion was established using a porous gelatin microcarrier crosslinked with hyaluronic acid (PGM-HA), and the purified MSC-PP from culture supernatant was characterized by mass spectrometric analysis. The results showed the 3D dynamic culture system regulated MSCs cell cycle, reduced apoptosis, and decreased lactic acid content, and the MSC-PP produced in 3D group can promote cell proliferation, migration, and adhesion. The MSC-PP + PEG system maintained stable release in 28 days of observation in vitro. The in vivo therapeutic efficacy was investigated in the rabbit's third-degree burn model, and saline, PEG, MSC-PP, and MSC-PP + PEG treatments groups were set. The in vivo results showed that the MSC-PP + PEG group significantly improved wound healing, inhibited scar formation, and facilitated skin appendage regeneration. In conclusion, the MSC-PP + PEG sustained-release system provides a potentially effective treatment for deep burn skin healing.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of OphthalmologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Cheng Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jinchao Liang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Yingyi Shan
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Liang Miao
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Mu He
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Xiaoying Wang
- Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jianhua Zhang
- Special WardsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
4
|
Sahoo A, Damala M, Jaffet J, Prasad D, Basu S, Singh V. Expansion and characterization of human limbus-derived stromal/mesenchymal stem cells in xeno-free medium for therapeutic applications. Stem Cell Res Ther 2023; 14:89. [PMID: 37061739 PMCID: PMC10105964 DOI: 10.1186/s13287-023-03299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been proven to prevent and clear corneal scarring and limbal stem cell deficiency. However, using animal-derived serum in a culture medium raises the ethical and regulatory bar. This study aims to expand and characterize human limbus-derived stromal/mesenchymal stem cells (hLMSCs) for the first time in vitro in the xeno-free medium. METHODS Limbal tissue was obtained from therapeutic grade corneoscleral rims and subjected to explant culture till tertiary passage in media with and without serum (STEM MACS XF; SM), to obtain pure hLMSCs. Population doubling time, cell proliferation, expression of phenotypic markers, tri-lineage differentiation, colony-forming potential and gene expression analysis were carried out to assess the retention of phenotypic and genotypic characteristics of hLMSCs. RESULTS The serum-free medium supported the growth of hLMSCs, retaining similar morphology but a significantly lower doubling time of 23 h (*p < 0.01) compared to the control medium. FACS analysis demonstrated ≥ 90% hLMSCs were positive for CD90+, CD73+, CD105+, and ≤ 6% were positive for CD45-, CD34- and HLA-DR-. Immunofluorescence analysis confirmed similar expression of Pax6+, COL IV+, ABCG2+, ABCB5+, VIM+, CD90+, CD105+, CD73+, HLA-DR- and CD45-, αSMA- in both the media. Tri-lineage differentiation potential and gene expression of hLMSCs were retained similarly to that of the control medium. CONCLUSION The findings of this study demonstrate successful isolation, characterization and culture optimization of hLMSCs for the first time in vitro in a serum-free environment. This will help in the future pre-clinical and clinical applications of MSCs in translational research.
Collapse
Affiliation(s)
- Abhishek Sahoo
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mukesh Damala
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sayan Basu
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Delabie W, De Bleser D, Vandewalle V, Vandekerckhove P, Compernolle V, Feys HB. Single step method for high yield human platelet lysate production. Transfusion 2023; 63:373-383. [PMID: 36426732 PMCID: PMC10099704 DOI: 10.1111/trf.17188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND We aimed to develop a single step method for the production of human platelet lysate (hPL). The method must result in high hPL yields, be closed system and avoid heparin use. STUDY DESIGN AND METHODS The method aimed at using glass beads and calcium. An optimal concentration of calcium and glass beads was determined by serial dilution. This was translated to a novel method and compared to known methods: freeze-thawing and high calcium. Quality outcome measures were transmittance, fibrinogen and growth factor content, and cell doubling time. RESULTS An optimal concentration of 5 mM Ca2+ and 0.2 g/ml glass beads resulted in hPL with yields of 92% ± 1% (n = 50) independent of source material (apheresis or buffy coat-derived). The transmittance was highest (56% ± 9%) compared to known methods (<39%). The fibrinogen concentration (7.0 ± 1.1 μg/ml) was well below the threshold, avoiding the need for heparin. Growth factor content was similar across hPL production methods. The cell doubling time of adipose derived stem cells was 25 ± 1 h and not different across methods. Batch consistency was determined across six batches of hPL (each n = 25 constituting concentrates) and was <11% for all parameters including cell doubling time. Calcium precipitation formed after 4 days of culturing stem cells in media with hPL prepared by the high (15 mM) Ca2+ method, but not with hPL prepared by glass bead method. DISCUSSION The novel method transforms platelet concentrates to hPL with little hands-on time. The method results in high yield, is closed system, without heparin and non-inferior to published methods.
Collapse
Affiliation(s)
- Willem Delabie
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Dominique De Bleser
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Vicky Vandewalle
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Philippe Vandekerckhove
- Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium.,Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Global Health, Stellenbosch University, Stellenbosch, South Africa
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Meftahpour V, Ghorbani F, Ahmadi M, Aghebati-Maleki A, Abbaspour-Aghdam S, Fotouhi A, Zamani M, Maleki A, Khakpour M, Aghebati-Maleki L. Evaluating the effects of autologous platelet lysate on gene expression of bone growth factors and related cytokines secretion in rabbits with bone fracture. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Brachtl G, Poupardin R, Hochmann S, Raninger A, Jürchott K, Streitz M, Schlickeiser S, Oeller M, Wolf M, Schallmoser K, Volk HD, Geissler S, Strunk D. Batch Effects during Human Bone Marrow Stromal Cell Propagation Prevail Donor Variation and Culture Duration: Impact on Genotype, Phenotype and Function. Cells 2022; 11:946. [PMID: 35326396 PMCID: PMC8946746 DOI: 10.3390/cells11060946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Donor variation is a prominent critical issue limiting the applicability of cell-based therapies. We hypothesized that batch effects during propagation of bone marrow stromal cells (BMSCs) in human platelet lysate (hPL), replacing fetal bovine serum (FBS), can affect phenotypic and functional variability. We therefore investigated the impact of donor variation, hPL- vs. FBS-driven propagation and exhaustive proliferation, on BMSC epigenome, transcriptome, phenotype, coagulation risk and osteochondral regenerative function. Notably, propagation in hPL significantly increased BMSC proliferation, created significantly different gene expression trajectories and distinct surface marker signatures, already after just one passage. We confirmed significantly declining proliferative potential in FBS-expanded BMSC after proliferative challenge. Flow cytometry verified the canonical fibroblastic phenotype in culture-expanded BMSCs. We observed limited effects on DNA methylation, preferentially in FBS-driven cultures, irrespective of culture duration. The clotting risk increased over culture time. Moreover, expansion in xenogenic serum resulted in significant loss of function during 3D cartilage disk formation and significantly increased clotting risk. Superior chondrogenic function under hPL-conditions was maintained over culture. The platelet blood group and isoagglutinins had minor impact on BMSC function. These data demonstrate pronounced batch effects on BMSC transcriptome, phenotype and function due to serum factors, partly outcompeting donor variation after just one culture passage.
Collapse
Affiliation(s)
- Gabriele Brachtl
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Sarah Hochmann
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Anna Raninger
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Karsten Jürchott
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
| | - Mathias Streitz
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, 17493 Greifswald, Germany
| | - Stephan Schlickeiser
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
| | - Michaela Oeller
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Martin Wolf
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Hans-Dieter Volk
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
- Berlin Center for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Sven Geissler
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
- Berlin Center for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| |
Collapse
|
9
|
da Fonseca L, Santos GS, Huber SC, Setti TM, Setti T, Lana JF. Human platelet lysate - A potent (and overlooked) orthobiologic. J Clin Orthop Trauma 2021; 21:101534. [PMID: 34386346 PMCID: PMC8339333 DOI: 10.1016/j.jcot.2021.101534] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/25/2021] [Accepted: 07/25/2021] [Indexed: 01/03/2023] Open
Abstract
The knowledge of the essential role of platelets in tissue healing is gradually increasing and as regenerative medicine prompts new solutions, platelet-derived bioproducts have been proposed as a potential tool in this field. In orthopaedics and sports medicine, the use of PRP has been rapidly increasing in popularity as patients seek novel non-surgical approaches to acute and chronic musculoskeletal conditions. The concept of having platelets as a secretory organ other than a mere sponge-like coagulation component opens up new frontiers for the use of the platelet secretome. Platelet lysate is a solution saturated by growth factors, proteins, cytokines, and chemokines involved in crucial healing processes and is administered to treat different diseases such as alopecia, oral mucositis, radicular pain, osteoarthritis, and cartilage and tendon disorders. For this purpose, the abundant presence of growth factors and chemokines stored in platelet granules can be naturally released by different strategies, mostly through lyophilization, thrombin activation or ultrasound baths (ultrasonication). As a result, human platelet lysate can be produced and applied as a pure orthobiologic. This review outlines the current knowledge about human platelet lysate as a powerful adjuvant in the orthobiological use for the treatment of musculoskeletal injuries, without however failing to raise some of its most applicable basic science.
Collapse
Affiliation(s)
- Lucas da Fonseca
- Orthopaedic Department – UNIFESP/EPM, 715 Napoleão de Barros St – Vila Clementino, 04024-002, São Paulo, SP, Brazil
| | - Gabriel Silva Santos
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil,Corresponding author. IOC – Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – 2nd floor, Room #29, Indaiatuba, São Paulo, 13334-170, Brazil. Tel.: +551930174366, +5519989283863.
| | - Stephany Cares Huber
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| | - Taís Mazzini Setti
- Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - Thiago Setti
- Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - José Fábio Lana
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| |
Collapse
|
10
|
Van Beylen K, Papantoniou I, Aerts JM. Microcarrier Screening and Evaluation for Dynamic Expansion of Human Periosteum-Derived Progenitor Cells in a Xenogeneic Free Medium. Front Bioeng Biotechnol 2021; 9:624890. [PMID: 34109163 PMCID: PMC8181150 DOI: 10.3389/fbioe.2021.624890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
An increasing need toward a more efficient expansion of adherent progenitor cell types arises with the advancements of cell therapy. The use of a dynamic expansion instead of a static planar expansion could be one way to tackle the challenges of expanding adherent cells at a large scale. Microcarriers are often reported as a biomaterial for culturing cells in suspension. However, the type of microcarrier has an effect on the cell expansion. In order to find an efficient expansion process for a specific adherent progenitor cell type, it is important to investigate the effect of the type of microcarrier on the cell expansion. Human periosteum-derived progenitor cells are extensively used in skeletal tissue engineering for the regeneration of bone defects. Therefore, we evaluated the use of different microcarriers on human periosteum-derived progenitor cells. In order to assess the potency, identity and viability of these cells after being cultured in the spinner flasks, this study performed several in vitro and in vivo analyses. The novelty of this work lies in the combination of screening different microcarriers for human periosteum-derived progenitor cells with in vivo assessments of the cells’ potency using the microcarrier that was selected as the most promising one. The results showed that expanding human periosteum-derived progenitor cells in spinner flasks using xeno-free medium and Star-Plus microcarriers, does not affect the potency, identity or viability of the cells. The potency of the cells was assured with an in vivo evaluation, where bone formation was achieved. In summary, this expansion method has the potential to be used for large scale cell expansion with clinical relevance.
Collapse
Affiliation(s)
- Kathleen Van Beylen
- M3-BIORES: Measure, Model, and Manage Bioresponses, Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Skeletal Biology and Engineering Research Centre, Leuven, Belgium.,Foundation for Research and Technology - Hellas (FORTH), Institute of Chemical Engineering Sciences, Patras, Greece
| | - Jean-Marie Aerts
- M3-BIORES: Measure, Model, and Manage Bioresponses, Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Papantoniou I, Nilsson Hall G, Loverdou N, Lesage R, Herpelinck T, Mendes L, Geris L. Turning Nature's own processes into design strategies for living bone implant biomanufacturing: a decade of Developmental Engineering. Adv Drug Deliv Rev 2021; 169:22-39. [PMID: 33290762 PMCID: PMC7839840 DOI: 10.1016/j.addr.2020.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
A decade after the term developmental engineering (DE) was coined to indicate the use of developmental processes as blueprints for the design and development of engineered living implants, a myriad of proof-of-concept studies demonstrate the potential of this approach in small animal models. This review provides an overview of DE work, focusing on applications in bone regeneration. Enabling technologies allow to quantify the distance between in vitro processes and their developmental counterpart, as well as to design strategies to reduce that distance. By embedding Nature's robust mechanisms of action in engineered constructs, predictive large animal data and subsequent positive clinical outcomes can be gradually achieved. To this end, the development of next generation biofabrication technologies should provide the necessary scale and precision for robust living bone implant biomanufacturing.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), Stadiou street, 26504 Patras, Greece; Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Gabriella Nilsson Hall
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Niki Loverdou
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Raphaelle Lesage
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Tim Herpelinck
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Luis Mendes
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Liesbet Geris
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| |
Collapse
|
12
|
Barro L, Burnouf PA, Chou ML, Nebie O, Wu YW, Chen MS, Radosevic M, Knutson F, Burnouf T. Human platelet lysates for human cell propagation. Platelets 2020; 32:152-162. [PMID: 33251940 DOI: 10.1080/09537104.2020.1849602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A pathogen-free and standardized xeno-free supplement of growth media is required for the ex vivo propagation of human cells used as advanced therapeutic medicinal products and for clinical translation in regenerative medicine and cell therapies. Human platelet lysate (HPL) made from therapeutic-grade platelet concentrate (PC) is increasingly regarded as being an efficient xeno-free alternative growth medium supplement to fetal bovine serum (FBS) for clinical-grade isolation and/or propagation of human cells. Most experimental studies establishing the superiority of HPL over FBS were conducted using mesenchymal stromal cells (MSCs) from bone marrow or adipose tissues. Data almost unanimously concur that MSCs expanded in a media supplemented with HPL have improved proliferation, shorter doubling times, and preserved clonogenicity, immunophenotype, in vitro trilineage differentiation capacity, and T-cell immunosuppressive activity. HPL can also be substituted for FBS when propagating MSCs from various other tissue sources, including Wharton jelly, the umbilical cord, amniotic fluid, dental pulp, periodontal ligaments, and apical papillae. Interestingly, HPL xeno-free supplementation is also proving successful for expanding human-differentiated cells, including chondrocytes, corneal endothelium and corneal epithelium cells, and tenocytes, for transplantation and tissue-engineering applications. In addition, the most recent developments suggest the possibility of successfully expanding immune cells such as macrophages, dendritic cells, and chimeric antigen receptor-T cells in HPL, further broadening its use as a growth medium supplement. Therefore, strong scientific rationale supports the use of HPL as a universal growth medium supplement for isolating and propagating therapeutic human cells for transplantation and tissue engineering. Efforts are underway to ensure optimal standardization and pathogen safety of HPL to secure its reliability for clinical-grade cell-therapy and regenerative medicine products and tissue engineering.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering,Taipei Medical University, Taipei, Taiwan
| | - Pierre-Alain Burnouf
- Technological Intelligence Department, Human Protein Process Sciences, Lille, France
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,INSERM UMRS 938, CdR Saint-Antoine, Laboratory Immune System, Neuroinflammation and Neurodegenerative Diseases, Saint-Antoine Hospital, Paris, France
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ming-Sheng Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Miryana Radosevic
- Technological Intelligence Department, Human Protein Process Sciences, Lille, France
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering,Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Chitosan-Hydrogel Polymeric Scaffold Acts as an Independent Primary Inducer of Osteogenic Differentiation in Human Mesenchymal Stromal Cells. MATERIALS 2020; 13:ma13163546. [PMID: 32796668 PMCID: PMC7475832 DOI: 10.3390/ma13163546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Regenerative medicine aims to restore damaged tissues and mainly takes advantage of human mesenchymal stromal cells (hMSCs), either alone or combined with three-dimensional scaffolds. The scaffold is generally considered a support, and its contribution to hMSC proliferation and differentiation is unknown or poorly investigated. The aim of this study was to evaluate the capability of an innovative three-dimensional gelatin–chitosan hybrid hydrogel scaffold (HC) to activate the osteogenic differentiation process in hMSCs. We seeded hMSCs from adipose tissue (AT-hMSCs) and bone marrow (BM-hMSCs) in highly performing HC of varying chitosan content in the presence of growing medium (GM) or osteogenic medium (OM) combined with Fetal Bovine Serum (FBS) or human platelet lysate (hPL). We primarily evaluated the viability and the proliferation of AT-hMSCs and BM-hMSCs under different conditions. Then, in order to analyse the activation of osteogenic differentiation, the osteopontin (OPN) transcript was absolutely quantified at day 21 by digital PCR. OPN was expressed under all conditions, in both BM-hMSCs and AT-hMSCs. Cells seeded in HC cultured with OM+hPL presented the highest OPN transcript levels, as expected. Interestingly, both BM-hMSCs and AT-hMSCs cultured with GM+FBS expressed OPN. In particular, BM-hMSCs cultured with GM+FBS expressed more OPN than those cultured with GM+hPL and OM+FBS; AT-hMSCs cultured with GM+FBS presented a lower expression of OPN when compared with those cultured with GM+hPL, but no significant difference was detected when compared with AT-hMSCs cultured with OM+FBS. No OPN expression was detected in negative controls. These results show the capability of HC to primarily and independently activate osteogenic differentiation pathways in hMCSs. Therefore, these scaffolds may be considered no more as a simple support, rather than active players in the differentiative and regenerative process.
Collapse
|
14
|
Large-Scale Expansion of Human Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:9529465. [PMID: 32733574 PMCID: PMC7378617 DOI: 10.1155/2020/9529465] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/07/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with strong immunosuppressive property that renders them an attractive source of cells for cell therapy. MSCs have been studied in multiple clinical trials to treat liver diseases, peripheral nerve damage, graft-versus-host disease, autoimmune diseases, diabetes mellitus, and cardiovascular damage. Millions to hundred millions of MSCs are required per patient depending on the disease, route of administration, frequency of administration, and patient body weight. Multiple large-scale cell expansion strategies have been described in the literature to fetch the cell quantity required for the therapy. In this review, bioprocessing strategies for large-scale expansion of MSCs were systematically reviewed and discussed. The literature search in Medline and Scopus databases identified 26 articles that met the inclusion criteria and were included in this review. These articles described the large-scale expansion of 7 different sources of MSCs using 4 different bioprocessing strategies, i.e., bioreactor, spinner flask, roller bottle, and multilayered flask. The bioreactor, spinner flask, and multilayered flask were more commonly used to upscale the MSCs compared to the roller bottle. Generally, a higher expansion ratio was achieved with the bioreactor and multilayered flask. Importantly, regardless of the bioprocessing strategies, the expanded MSCs were able to maintain its phenotype and potency. In summary, the bioreactor, spinner flask, roller bottle, and multilayered flask can be used for large-scale expansion of MSCs without compromising the cell quality.
Collapse
|
15
|
Wyrobnik TA, Ducci A, Micheletti M. Advances in human mesenchymal stromal cell-based therapies - Towards an integrated biological and engineering approach. Stem Cell Res 2020; 47:101888. [PMID: 32688331 DOI: 10.1016/j.scr.2020.101888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advances of stem cell-based therapies in clinical trials have raised the need for large-scale manufacturing platforms that can supply clinically relevant doses to meet an increasing demand. Promising results have been reported using stirred-tank bioreactors, where human Mesenchymal Stromal Cells (hMSCs) were cultured in suspension on microcarriers (MCs), although the formation of microcarrier-cell-aggregates might still limit mass transfer and determine a heterogeneous distribution of hMSCs. A variety of MCs, bioreactor-impeller configurations, and agitation conditions have been established in an attempt to overcome the trade-off of ensuring good suspension while keeping the stresses to a minimum. While understanding and controlling the fluid flow environment of bioreactors has been initially under-appreciated, it has recently gained in popularity in the mission of providing ideal culture environments across different scales. This review article aims to provide a comprehensive overview of how rigorous engineering characterisation studies improved the outcome of biological process development and scale-up efforts. Reconciling these two disciplines is crucial to propose tailored bioprocessing solutions that can provide improved growth environments across a range of scales for the allogeneic cell therapies of the future.
Collapse
Affiliation(s)
- Tom A Wyrobnik
- Department of Biochemical Engineering, UCL, Gower Street, London WC1E 6BT, UK
| | - Andrea Ducci
- Department of Mechanical Engineering, UCL, Torrington Place, London WC1E 7JE, UK
| | - Martina Micheletti
- Department of Biochemical Engineering, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Tsai AC, Jeske R, Chen X, Yuan X, Li Y. Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers. Front Bioeng Biotechnol 2020; 8:640. [PMID: 32671039 PMCID: PMC7327111 DOI: 10.3389/fbioe.2020.00640] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are a promising candidate in cell therapy as they exhibit multilineage differentiation, homing to the site of injury, and secretion of trophic factors that facilitate tissue healing and/or modulate immune response. As a result, hMSC-derived products have attracted growing interests in preclinical and clinical studies. The development of hMSC culture platforms for large-scale biomanufacturing is necessary to meet the requirements for late-phase clinical trials and future commercialization. Microcarriers in stirred-tank bioreactors have been widely utilized in large-scale expansion of hMSCs for translational applications because of a high surface-to-volume ratio compared to conventional 2D planar culture. However, recent studies have demonstrated that microcarrier-expanded hMSCs differ from dish- or flask-expanded cells in size, morphology, proliferation, viability, surface markers, gene expression, differentiation potential, and secretome profile which may lead to altered therapeutic potency. Therefore, understanding the bioprocessing parameters that influence hMSC therapeutic efficacy is essential for the optimization of microcarrier-based bioreactor system to maximize hMSC quantity without sacrificing quality. In this review, biomanufacturing parameters encountered in planar culture and microcarrier-based bioreactor culture of hMSCs are compared and discussed with specific focus on cell-adhesion surface (e.g., discontinuous surface, underlying curvature, microcarrier stiffness, porosity, surface roughness, coating, and charge) and the dynamic microenvironment in bioreactor culture (e.g., oxygen and nutrients, shear stress, particle collision, and aggregation). The influence of dynamic culture in bioreactors on hMSC properties is also reviewed in order to establish connection between bioprocessing and stem cell function. This review addresses fundamental principles and concepts for future design of biomanufacturing systems for hMSC-based therapy.
Collapse
Affiliation(s)
- Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
17
|
Al Hosni R, Shah M, Cheema U, Roberts HC, Luyten FP, Roberts SJ. Mapping human serum-induced gene networks as a basis for the creation of biomimetic periosteum for bone repair. Cytotherapy 2020; 22:424-435. [PMID: 32522398 DOI: 10.1016/j.jcyt.2020.03.434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The periosteum is a highly vascularized, collagen-rich tissue that plays a crucial role in directing bone repair. This is orchestrated primarily by its resident progenitor cell population. Indeed, preservation of periosteum integrity is critical for bone healing. Cells extracted from the periosteum retain their osteochondrogenic properties and as such are a promising basis for tissue engineering strategies for the repair of bone defects. However, the culture expansion conditions and the way in which the cells are reintroduced to the defect site are critical aspects of successful translation. Indeed, expansion in human serum and implantation on biomimetic materials has previously been shown to improve in vivo bone formation. AIM This study aimed to develop a protocol to allow for the expansion of human periosteum derived cells (hPDCs) in a biomimetic periosteal-like environment. METHODS The expansion conditions were defined through the investigation of the bioactive cues involved in augmenting hPDC proliferative and multipotency characteristics, based on transcriptomic analysis of cells cultured in human serum. RESULTS Master regulators of transcriptional networks were identified, and an optimized periosteum-derived growth factor cocktail (PD-GFC; containing β-estradiol, FGF2, TNFα, TGFβ, IGF-1 and PDGF-BB) was generated. Expansion of hPDCs in PD-GFC resulted in serum mimicry with regard to the cell morphology, proliferative capacity and chondrogenic differentiation. When incorporated into a three-dimensional collagen type 1 matrix and cultured in PD-GFC, the hPDCs migrated to the surface that represented the matrix topography of the periosteum cambium layer. Furthermore, gene expression analysis revealed a down-regulated WNT and TGFβ signature and an up-regulation of CREB, which may indicate the hPDCs are recreating their progenitor cell signature. CONCLUSION This study highlights the first stage in the development of a biomimetic periosteum, which may have applications in bone repair.
Collapse
Affiliation(s)
- Rawiya Al Hosni
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Mittal Shah
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Umber Cheema
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Helen C Roberts
- Department of Natural Sciences, Faculty of Science & Technology, Middlesex University, London, UK
| | - Frank P Luyten
- Skeletal Biology and Tissue Engineering Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium and
| | - Scott J Roberts
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK; Skeletal Biology and Tissue Engineering Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium and; Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.
| |
Collapse
|
18
|
Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Idrus RBH, Yazid MD. Three dimensional microcarrier system in mesenchymal stem cell culture: a systematic review. Cell Biosci 2020; 10:75. [PMID: 32518618 PMCID: PMC7271456 DOI: 10.1186/s13578-020-00438-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/27/2020] [Indexed: 01/09/2023] Open
Abstract
Stem cell-based regenerative medicine is a promising approach for tissue reconstruction. However, a large number of cells are needed in a typical clinical study, where conventional monolayer cultures might pose a limitation for scale-up. The purpose of this review was to systematically assess the application of microcarriers in Mesenchymal Stem Cell cultures. A comprehensive search was conducted in Medline via Ebscohost, Pubmed, and Scopus, and relevant studies published between 2015 and 2019 were selected. The literature search identified 53 related studies, but only 14 articles met the inclusion criteria. These include 7 utilised commercially available microcarriers, while the rest were formulated based on different surface characteristics, all of which are discussed in this review. Current applications of microcarriers were focused on MSC expansion and induction of MSCs into different lineages. These studies demonstrated that MSCs could proliferate in a microcarrier culture system in-fold compared to monolayer cultures, and the culture system could simulate a three-dimensional environment which induces cell differentiation. However, detailed studies are still required before this system were to be adapted into the scale of GMP manufacturing.
Collapse
Affiliation(s)
- Benson Koh
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia.,Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Quality Analysis of Minerals Formed by Jaw Periosteal Cells under Different Culture Conditions. Int J Mol Sci 2019; 20:ijms20174193. [PMID: 31461878 PMCID: PMC6747376 DOI: 10.3390/ijms20174193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Previously, we detected a higher degree of mineralization in fetal calf serum (FCS) compared to serum-free cultured jaw periosteum derived osteoprogenitor cells (JPCs). By Raman spectroscopy, we detected an earlier formation of mineralized extracellular matrix (ECM) of higher quality under serum-free media conditions. However, mineralization potential remained too low. In the present study, we aimed to investigate the biochemical composition and subsequent biomechanical properties of the JPC-formed ECM and minerals under human platelet lysate (hPL) and FCS supplementation. JPCs were isolated (n = 4 donors) and expanded under FCS conditions and used in passage five for osteogenic induction under both, FCS and hPL media supplementation. Raman spectroscopy and Alizarin Red/von Kossa staining were employed for biochemical composition analyses and for visualization and quantification of mineralization. Osteocalcin gene expression was analyzed by quantitative PCR. Biomechanical properties were assessed by using atomic force microscopy (AFM). Raman spectroscopic measurements showed significantly higher (p < 0.001) phosphate to protein ratios and in the tendency, lower carbonate to phosphate ratios in osteogenically induced JPCs under hPL in comparison to FCS culturing. Furthermore, higher crystal sizes were detected under hPL culturing of the cells. With respect to the ECM, significantly higher ratios of the precursor protein proline to hydroxyproline were detected in hPL-cultured JPC monolayers (p < 0.001). Additionally, significantly higher levels (p < 0.001) of collagen cross-linking were calculated, indicating a higher degree of collagen maturation in hPL-cultured JPCs. By atomic force microscopy, a significant increase in ECM stiffness (p < 0.001) of FCS cultured JPC monolayers was observed. The reverse effect was measured for the JPC formed precipitates/minerals. Under hPL supplementation, JPCs formed minerals of significantly higher stiffness (p < 0.001) when compared to the FCS setting. This study demonstrates that hPL culturing of JPCs leads to the formation of an anorganic material of superior quality in terms of biochemical composition and mechanical properties.
Collapse
|