1
|
Şen B, Balcı‐Peynircioğlu B. Cellular models in autoinflammatory disease research. Clin Transl Immunology 2024; 13:e1481. [PMID: 38213819 PMCID: PMC10784111 DOI: 10.1002/cti2.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous group of rare genetic disorders caused by dysregulation of the innate immune system. Understanding the complex mechanisms underlying these conditions is critical for developing effective treatments. Cellular models are essential for identifying new conditions and studying their pathogenesis. Traditionally, these studies have used primary cells and cell lines of disease-relevant cell types, although newer induced pluripotent stem cell (iPSC)-based models might have unique advantages. In this review, we discuss the three cellular models used in autoinflammatory disease research, their strengths and weaknesses, and their applications to inform future research in the field.
Collapse
Affiliation(s)
- Başak Şen
- Department of Medical BiologyHacettepe University Faculty of Medicine, SıhhiyeAnkaraTurkey
| | | |
Collapse
|
2
|
Shoda H, Natsumoto B, Fujio K. Investigation of immune-related diseases using patient-derived induced pluripotent stem cells. Inflamm Regen 2023; 43:51. [PMID: 37876023 PMCID: PMC10594759 DOI: 10.1186/s41232-023-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
The precise pathogenesis of immune-related diseases remains unclear, and new effective therapeutic choices are required for the induction of remission or cure in these diseases. Basic research utilizing immune-related disease patient-derived induced pluripotent stem (iPS) cells is expected to be a promising platform for elucidating the pathogenesis of the diseases and for drug discovery. Since autoinflammatory diseases are usually monogenic, genetic mutations affect the cell function and patient-derived iPS cells tend to exhibit disease-specific phenotypes. In particular, iPS cell-derived monocytic cells and macrophages can be used for functional experiments, such as inflammatory cytokine production, and are often employed in research on patients with autoinflammatory diseases.On the other hand, the utilization of disease-specific iPS cells is less successful for research on autoimmune diseases. One reason for this is that autoimmune diseases are usually polygenic, which makes it challenging to determine which factors cause the phenotypes of patient-derived iPS cells are caused by. Another reason is that protocols for differentiating some lymphocytes associated with autoimmunity, such as CD4+T cells or B cells, from iPS cells have not been well established. Nevertheless, several groups have reported studies utilizing autoimmune disease patient-derived iPS cells, including patients with rheumatoid arthritis, systemic lupus erythematosus (SLE), and systemic sclerosis. Particularly, non-hematopoietic cells, such as fibroblasts and cardiomyocytes, differentiated from autoimmune patient-derived iPS cells have shown promising results for further research into the pathogenesis. Recently, our groups established a method for differentiating dendritic cells that produce interferon-alpha, which can be applied as an SLE pathological model. In summary, patient-derived iPS cells can provide a promising platform for pathological research and new drug discovery in the field of immune-related diseases.
Collapse
Affiliation(s)
- Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Bunki Natsumoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
3
|
Tanaka T, Shiba T, Honda Y, Izawa K, Yasumi T, Saito MK, Nishikomori R. Induced Pluripotent Stem Cell-Derived Monocytes/Macrophages in Autoinflammatory Diseases. Front Immunol 2022; 13:870535. [PMID: 35603217 PMCID: PMC9120581 DOI: 10.3389/fimmu.2022.870535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of autoinflammation, first proposed in 1999, refers to a seemingly unprovoked episode of sterile inflammation manifesting as unexplained fever, skin rashes, and arthralgia. Autoinflammatory diseases are caused mainly by hereditary abnormalities of innate immunity, without the production of autoantibodies or autoreactive T cells. The revolutionary discovery of induced pluripotent stem cells (iPSCs), whereby a patient’s somatic cells can be reprogrammed into an embryonic pluripotent state by forced expression of a defined set of transcription factors, has the transformative potential to enable in vitro disease modeling and drug candidate screening, as well as to provide a resource for cell replacement therapy. Recent reports demonstrate that recapitulating a disease phenotype in vitro is feasible for numerous monogenic diseases, including autoinflammatory diseases. In this review, we provide a comprehensive overview of current advances in research into autoinflammatory diseases involving iPSC-derived monocytes/macrophages. This review may aid in the planning of new studies of autoinflammatory diseases.
Collapse
Affiliation(s)
- Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatrics, Japanese Red Cross Otsu Hospital, Otsu, Japan
- *Correspondence: Takayuki Tanaka,
| | - Takeshi Shiba
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Yoshitaka Honda
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
4
|
Cui D, Franz A, Fillon SA, Jannetti L, Isambert T, Fundel-Clemens K, Huber HJ, Viollet C, Ghanem A, Niwa A, Weigle B, Pflanz S. High-Yield Human Induced Pluripotent Stem Cell-Derived Monocytes and Macrophages Are Functionally Comparable With Primary Cells. Front Cell Dev Biol 2021; 9:656867. [PMID: 33937256 PMCID: PMC8080307 DOI: 10.3389/fcell.2021.656867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Macrophages are pivotal effectors of host immunity and regulators of tissue homeostasis. Understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (hiPSC)-derived monocytes and macrophages, as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of macrophage biology and implication in human diseases. In this study, we present a fully optimized differentiation protocol of hiPSC-derived monocytes and granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). We present characterization of iPSC-derived myeloid lineage cells at phenotypic, functional, and transcriptomic levels, in comparison with corresponding subsets of peripheral blood-derived cells. We also highlight the application of hiPSC-derived monocytes and macrophages as a gene-editing platform for functional validation in research and drug screening, and the study also provides a reference for cell therapies.
Collapse
Affiliation(s)
- Di Cui
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cancer Immunology and Immune Modulation, Biberach an der Riss, Germany
| | - Alexandra Franz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cancer Immunology and Immune Modulation, Biberach an der Riss, Germany
| | - Sophie A Fillon
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cancer Immunology and Immune Modulation, Biberach an der Riss, Germany
| | - Linda Jannetti
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cancer Immunology and Immune Modulation, Biberach an der Riss, Germany
| | - Timo Isambert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Medicinal Chemistry, Biberach an der Riss, Germany
| | - Katrin Fundel-Clemens
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Biberach an der Riss, Germany
| | - Heinrich J Huber
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Biberach an der Riss, Germany
| | - Coralie Viollet
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Computational Biology and Digital Sciences, Biberach an der Riss, Germany
| | - Alexander Ghanem
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cancer Immunology and Immune Modulation, Biberach an der Riss, Germany
| | - Akira Niwa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Bernd Weigle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cancer Immunology and Immune Modulation, Biberach an der Riss, Germany
| | - Stefan Pflanz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cancer Immunology and Immune Modulation, Biberach an der Riss, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Venture Fund, Ridgefield, CT, United States
| |
Collapse
|
5
|
Kase N, Terashima M, Ohta A, Niwa A, Honda‐Ozaki F, Kawasaki Y, Nakahata T, Kanazawa N, Saito MK. Pluripotent stem cell-based screening identifies CUDC-907 as an effective compound for restoring the in vitro phenotype of Nakajo-Nishimura syndrome. Stem Cells Transl Med 2020; 10:455-464. [PMID: 33280267 PMCID: PMC7900583 DOI: 10.1002/sctm.20-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/25/2022] Open
Abstract
Nakajo-Nishimura syndrome (NNS) is an autoinflammatory disorder caused by a homozygous mutations in the PSMB8 gene. The administration of systemic corticosteroids is partially effective, but continuous treatment causes severe side effects. We previously established a pluripotent stem cell (PSC)-derived NNS disease model that reproduces several inflammatory phenotypes, including the overproduction of monocyte chemoattractant protein-1 (MCP-1) and interferon gamma-induced protein-10 (IP-10). Here we performed high-throughput compound screening (HTS) using this PSC-derived NNS model to find potential therapeutic candidates and identified CUDC-907 as an effective inhibitor of the release of MCP-1 and IP-10. Short-term treatment of CUDC-907 did not induce cell death within therapeutic concentrations and was also effective on primary patient cells. Further analysis indicated that the inhibitory effect was post-transcriptional. These findings suggest that HTS with PSC-derived disease models is useful for finding drug candidates for autoinflammatory diseases.
Collapse
Affiliation(s)
- Naoya Kase
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Madoka Terashima
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Akira Ohta
- Department of Fundamental Cell TechnologyCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Akira Niwa
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Fumiko Honda‐Ozaki
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan,Department of Pediatrics and Developmental BiologyGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yuri Kawasaki
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Tatsutoshi Nakahata
- Department of Fundamental Cell TechnologyCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Nobuo Kanazawa
- Department of DermatologyWakayama Medical UniversityWakayamaJapan
| | - Megumu K. Saito
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| |
Collapse
|