1
|
Johnson ME, Bennett J, Montoro Bustos AR, Hanna SK, Kolmakov A, Sharp N, Petersen EJ, Lapasset PE, Sims CM, Murphy KE, Nelson BC. Combining secondary ion mass spectrometry image depth profiling and single particle inductively coupled plasma mass spectrometry to investigate the uptake and biodistribution of gold nanoparticles in Caenorhabditis elegans. Anal Chim Acta 2021; 1175:338671. [PMID: 34330435 DOI: 10.1016/j.aca.2021.338671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Analytical techniques capable of determining the spatial distribution and quantity (mass and/or particle number) of engineered nanomaterials in organisms are essential for characterizing nano-bio interactions and for nanomaterial risk assessments. Here, we combine the use of dynamic secondary ion mass spectrometry (dynamic SIMS) and single particle inductively coupled mass spectrometry (spICP-MS) techniques to determine the biodistribution and quantity of gold nanoparticles (AuNPs) ingested by Caenorhabditis elegans. We report the application of SIMS in image depth profiling mode for visualizing, identifying, and characterizing the biodistribution of AuNPs ingested by nematodes in both the lateral and z (depth) dimensions. In parallel, conventional- and sp-ICP-MS quantified the mean number of AuNPs within the nematode, ranging from 2 to 36 NPs depending on the size of AuNP. The complementary data from both SIMS image depth profiling and spICP-MS provides a complete view of the uptake, translocation, and size distribution of ingested NPs within Caenorhabditis elegans.
Collapse
Affiliation(s)
- Monique E Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States.
| | - Joe Bennett
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Antonio R Montoro Bustos
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Shannon K Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Andrei Kolmakov
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Nicholas Sharp
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Elijah J Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Patricia E Lapasset
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Christopher M Sims
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Karen E Murphy
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Bryant C Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| |
Collapse
|
2
|
A novel approach for 3D reconstruction of mice full-grown oocytes by time-of-flight secondary ion mass spectrometry. Anal Bioanal Chem 2019; 412:311-319. [DOI: 10.1007/s00216-019-02237-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 01/23/2023]
|
3
|
High resolution imaging and 3D analysis of Ag nanoparticles in cells with ToF-SIMS and delayed extraction. Biointerphases 2018; 13:03B410. [PMID: 29490464 DOI: 10.1116/1.5015957] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Within this study, the authors use human mesenchymal stem cells incubated with silver nanoparticles (AgNPs) as a model system to systematically investigate the advantages and drawbacks of the fast imaging delayed extraction mode for two-dimensional and three-dimensional (3D) analyses at the cellular level. The authors compare the delayed extraction mode with commonly employed measurement modes in terms of mass and lateral resolution, intensity, and dose density. Using the delayed extraction mode for single cell analysis, a high mass resolution up to 4000 at m/z = 184.08 combined with a lateral resolution up to 360 nm is achieved. Furthermore, the authors perform 3D analyses with Ar-clusters (10 keV) and O2+ (500 eV) as sputter species, combined with Bi3+ and delayed extraction for analysis. Cell compartments like the nucleus are visualized in 3D, whereas no realistic 3D reconstruction of intracellular AgNP is possible due to the different sputter rates of inorganic and organic cell materials. Furthermore, the authors show that the sputter yield of Ag increases with the decreasing Ar-cluster size, which might be an approach to converge the different sputter rates.
Collapse
|
4
|
Jiménez-Lamana J, Szpunar J, Łobinski R. New Frontiers of Metallomics: Elemental and Species-Specific Analysis and Imaging of Single Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:245-270. [PMID: 29884968 DOI: 10.1007/978-3-319-90143-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single cells represent the basic building units of life, and thus their study is one the most important areas of research. However, classical analysis of biological cells eludes the investigation of cell-to-cell differences to obtain information about the intracellular distribution since it only provides information by averaging over a huge number of cells. For this reason, chemical analysis of single cells is an expanding area of research nowadays. In this context, metallomics research is going down to the single-cell level, where high-resolution high-sensitive analytical techniques are required. In this chapter, we present the latest developments and applications in the fields of single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS), mass cytometry, laser ablation (LA)-ICP-MS, nanoscale secondary ion mass spectrometry (nanoSIMS), and synchrotron X-ray fluorescence microscopy (SXRF) for single-cell analysis. Moreover, the capabilities and limitations of the current analytical techniques to unravel single-cell metabolomics as well as future perspectives in this field will be discussed.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France.
| | - Joanna Szpunar
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| | - Ryszard Łobinski
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| |
Collapse
|
5
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
6
|
Paine MRL, Kooijman PC, Fisher GL, Heeren RMA, Fernández FM, Ellis SR. Visualizing molecular distributions for biomaterials applications with mass spectrometry imaging: a review. J Mater Chem B 2017; 5:7444-7460. [PMID: 32264222 DOI: 10.1039/c7tb01100h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mass spectrometry imaging (MSI) is a rapidly emerging field that is continually finding applications in new and exciting areas. The ability of MSI to measure the spatial distribution of molecules at or near the surface of complex substrates makes it an ideal candidate for many applications, including those in the sphere of materials chemistry. Continual development and optimization of both ionization sources and analyzer technologies have resulted in a wide array of MSI tools available, both commercially available and custom-built, with each configuration possessing inherent strengths and limitations. Despite the unique potential of MSI over other chemical imaging methods, their potential and application to (bio)materials science remains in our view a largely underexplored avenue. This review will discuss these techniques enabling high parallel molecular detection, focusing on those with reported uses in (bio)materials chemistry applications and highlighted with select applications. Different technologies are presented in three main sections; secondary ion mass spectrometry (SIMS) imaging, matrix-assisted laser desorption ionization (MALDI) MSI, and emerging MSI technologies with potential for biomaterial analysis. The first two sections (SIMS and MALDI) discuss well-established methods that are continually evolving both in technological advancements and in experimental versatility. In the third section, relatively new and versatile technologies capable of performing measurements under ambient conditions will be introduced, with reported applications in materials chemistry or potential applications discussed. The aim of this review is to provide a concise resource for those interested in utilizing MSI for applications such as biomimetic materials, biological/synthetic material interfaces, polymer formulation and bulk property characterization, as well as the spatial and chemical distributions of nanoparticles, or any other molecular imaging application requiring broad chemical speciation.
Collapse
Affiliation(s)
- Martin R L Paine
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht 6229 ER, The Netherlands.
| | | | | | | | | | | |
Collapse
|
7
|
Bloom AN, Tian H, Schoen C, Winograd N. Label-free visualization of nilotinib-functionalized gold nanoparticles within single mammalian cells by C 60- SIMS imaging. Anal Bioanal Chem 2017; 409:3067-3076. [PMID: 28283715 DOI: 10.1007/s00216-017-0262-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
Obtaining a comprehensive grasp of the behavior and interaction of pharmaceutical compounds within single cells provides some of the fundamental details necessary for more effective drug development. In particular, the changes ensuing in the carrier, drug, and host environment in targeted drug therapy applications must be explored in greater detail, as these are still not well understood. Here, nilotinib-functionalized gold nanoparticles are examined within single mammalian cells with use of imaging cluster secondary ion mass spectrometry in a model study designed to enhance our understanding of what occurs to these particles once that have been internalized. Nilotinib, several types of gold nanoparticles, and the functionalized combination of the two were surveyed and successfully imaged within single cells to determine uptake and performance. Both nilotinib and the gold particle are able to be distinguished and visualized in the functionalized nanoparticle assembly within the cell. These compounds, while both internalized, do not appear to be present in the same pixels of the chemical image, indicating possible cleavage of nilotinib from the particle after cell uptake. The method provided in this work is a direct measurement of uptake and subcellular distribution of an active drug and its carrier within a framework. The results obtained from this study have the potential to be applied to future studies to provide more effective and specific cellular delivery of a relevant pharmaceutical compound.
Collapse
Affiliation(s)
- Anna N Bloom
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, PA, 16802, USA.
| | - Hua Tian
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, PA, 16802, USA
| | | | - Nicholas Winograd
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Veith L, Vennemann A, Breitenstein D, Engelhard C, Wiemann M, Hagenhoff B. Detection of SiO2 nanoparticles in lung tissue by ToF-SIMS imaging and fluorescence microscopy. Analyst 2017; 142:2631-2639. [DOI: 10.1039/c7an00399d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We demonstrate the suitability of the ToF-SIMS technique for the detection of SiO2 nanoparticles in lung tissue sections by a comparison to fluorescence microscopy.
Collapse
Affiliation(s)
- Lothar Veith
- Tascon GmbH
- D-48149 Münster
- Germany
- University of Siegen
- Department of Chemistry & Biology
| | | | | | - Carsten Engelhard
- University of Siegen
- Department of Chemistry & Biology
- D-57076 Siegen
- Germany
| | | | | |
Collapse
|
9
|
Bloom AN, Tian H, Winograd N. C60-SIMS imaging of nanoparticles within mammalian cells. Biointerphases 2015; 11:02A306. [PMID: 26721414 PMCID: PMC4698117 DOI: 10.1116/1.4939463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 01/24/2023] Open
Abstract
To achieve successful drug delivery via nanoparticles the interactions between the nanoparticle and the chemistry of the surrounding biological environment is of central importance. A thorough understanding of these interactions is necessary in order to better elucidate information regarding drug pathways and mechanisms of action in treatment protocols. As such, it is important to identify the location of the nanoparticle, the state of its functionalization, as well as any changes in the cellular environment. The use of cluster secondary ion mass spectrometry (SIMS) using C60 (+) primary ions makes simultaneous acquisition of this information possible. Here, SIMS has been successfully used to chemically image gold nanoparticles (AuNPs) within a model, single cell system involving macrophage-like RAW 264.7 cells. The macrophage-like properties of this cell line make it extremely well-suited for cell-uptake studies. Both AuNPs and two pharmaceutical compounds, amiodarone and elacridar, were successfully imaged within a cellular system using cluster SIMS. To verify that SIMS can also be used to detect functionalization and nanoparticles simultaneously, fluorophore-functionalized AuNPs were studied as a model system. The fluorescent characteristics of these functionalized nanoparticles enabled the visual confirmation of the presence and location of the particles within the cell.
Collapse
Affiliation(s)
- Anna N Bloom
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Hua Tian
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Nicholas Winograd
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| |
Collapse
|
10
|
Kokesch-Himmelreich J, Woltmann B, Torger B, Rohnke M, Arnhold S, Hempel U, Müller M, Janek J. Detection of organic nanoparticles in human bone marrow-derived stromal cells using ToF-SIMS and PCA. Anal Bioanal Chem 2015; 407:4555-65. [PMID: 25869483 DOI: 10.1007/s00216-015-8647-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 01/01/2023]
Abstract
The detection and localization of polymer-based nanoparticles in human bone marrow-derived stromal cells (hBMSC) by time-of-flight secondary ion mass spectrometry (ToF-SIMS) is reported as an example for the mass spectrometry imaging of organic nanoparticles in cell environments. Polyelectrolyte complex (PEC) nanoparticles (NP) made of polyethylenimine (PEI) and cellulose sulfate (CS), which were developed as potential drug carrier and coatings for implant materials, were chosen for the imaging experiments. To investigate whether the PEI/CS-NP were taken up by the hBMSC ToF-SIMS measurements on cross sections of the cells and depth profiling of whole, single cells were carried out. Since the mass spectra of the PEI/CS nanoparticles are close to the mass spectra of the cells principal component analysis (PCA) was performed to get specific masses of the PEI/CS-NP. Mass fragments originating from the NP compounds especially from cellulose sulfate could be used to unequivocally detect and image the PEI/CS-NP inside the hBMSC. The findings were confirmed by light and transmission electron microscopy. Graphical Abstract During ToF-SIMS analysis Bi3 (+) primary ions hit the sample surface and so called secondary ions (SI) are emitted and detected in the mass analyser. Exemplary mass images of cross sections of human mesenchymal stromal cells (red; m/z = 86.1 u) cultured with organic nanoparticles (green; m/z = 143.0 u) were obtained.
Collapse
Affiliation(s)
- Julia Kokesch-Himmelreich
- Institute of Physical Chemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schultz C, Powell K, Crossley A, Jurkschat K, Kille P, Morgan AJ, Read D, Tyne W, Lahive E, Svendsen C, Spurgeon DJ. Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:239-261. [PMID: 25516483 DOI: 10.1007/s10646-014-1387-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Initiatives to support the sustainable development of the nanotechnology sector have led to rapid growth in research on the environmental fate, hazards and risk of engineered nanoparticles (ENP). As the field has matured over the last 10 years, a detailed picture of the best methods to track potential forms of exposure, their uptake routes and best methods to identify and track internal fate and distributions following assimilation into organisms has begun to emerge. Here we summarise the current state of the field, focussing particularly on metal and metal oxide ENPs. Studies to date have shown that ENPs undergo a range of physical and chemical transformations in the environment to the extent that exposures to pristine well dispersed materials will occur only rarely in nature. Methods to track assimilation and internal distributions must, therefore, be capable of detecting these modified forms. The uptake mechanisms involved in ENP assimilation may include a range of trans-cellular trafficking and distribution pathways, which can be followed by passage to intracellular compartments. To trace toxicokinetics and distributions, analytical and imaging approaches are available to determine rates, states and forms. When used hierarchically, these tools can map ENP distributions to specific target organs, cell types and organelles, such as endosomes, caveolae and lysosomes and assess speciation states. The first decade of ENP ecotoxicology research, thus, points to an emerging paradigm where exposure is to transformed materials transported into tissues and cells via passive and active pathways within which they can be assimilated and therein identified using a tiered analytical and imaging approach.
Collapse
Affiliation(s)
- Carolin Schultz
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jeong CJ, In I, Park SY. Facile preparation of metal nanoparticle-coated polystyrene beads by catechol conjugated polymer. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chan Jin Jeong
- Department of IT Convergence; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
| | - Insik In
- Department of Polymer Engineering; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
| | - Sung Young Park
- Department of IT Convergence; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
- Department of Chemical and Biological Engineering; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
| |
Collapse
|
13
|
Oh YJ, Jeong CJ, Sharker SM, Lee SY, In I, Park SY. Synthesis and antibacterial activity of versatile substrate-coated biocidal material via catechol chemistry. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yeon Jeong Oh
- Department of Chemical and Biological Engineering; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
| | - Chan Jin Jeong
- Department of IT Convergence; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
| | - Shazid Md. Sharker
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - So Yeong Lee
- Department of Chemical and Biological Engineering; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
| | - Insik In
- Department of IT Convergence; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
- Department of Polymer Engineering; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
- Department of IT Convergence; Korea National University of Transportation; Chungju-Si 380-702 Republic of Korea
| |
Collapse
|
14
|
Mueller L, Traub H, Jakubowski N, Drescher D, Baranov VI, Kneipp J. Trends in single-cell analysis by use of ICP-MS. Anal Bioanal Chem 2014; 406:6963-77. [PMID: 25270864 DOI: 10.1007/s00216-014-8143-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/14/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of "multimodal spectroscopies."
Collapse
Affiliation(s)
- Larissa Mueller
- BAM Federal Institute for Materials Research and Testing, 12200, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
15
|
Mass spectrometric monitoring of Sr-enriched bone cements—from in vitro to in vivo. Anal Bioanal Chem 2013; 405:8769-80. [DOI: 10.1007/s00216-013-7329-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
|
16
|
Chen C, Li YF, Qu Y, Chai Z, Zhao Y. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem Soc Rev 2013; 42:8266-303. [DOI: 10.1039/c3cs60111k] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG. Chemical Analysis of Single Cells. Anal Chem 2012; 85:522-42. [DOI: 10.1021/ac303290s] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raphaël Trouillon
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Melissa K. Passarelli
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Jun Wang
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Michael E. Kurczy
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| |
Collapse
|