1
|
Pokidova OV, Novikova VO, Emel'yanova NS, Kormukhina AY, Kulikov AV, Utenyshev AN, Lazarenko VA, Ovanesyan NS, Starostina AA, Sanina NA. A nitrosyl iron complex with 3.4-dichlorothiophenolyl ligands: synthesis, structures and its reactions with targets - carriers of nitrogen oxide (NO) in vivo. Dalton Trans 2023; 52:2641-2662. [PMID: 36744818 DOI: 10.1039/d2dt04047f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, a new binuclear nitrosyl complex with 3.4-dichlorothiophenolyl ligands [Fe2(SC6H3Cl2)2(NO)4] has been synthesized. Nitrosyl iron complexes (NICs) are systems for the storage and delivery of NO in the body. There is a dynamic equilibrium between dinitrosyl iron units bound to low molecular weight ligands and high molecular weight (protein) ligands in vivo. From this point of view, the transformation of the studied complex in DMSO and buffer, as well as in biological systems, has been analyzed. In DMSO, it decomposes into mononuclear NICs, which quickly decay in buffer solutions with NO release. The high molecular weight product is formed as a result of the binding of the complex to bovine serum albumin (the Stern-Volmer constant is 2.1 × 105 M-1). In this case, the complex becomes a prolonged NO-donor. Such a long-term effect has been observed for the first time. Similarly, in a system with oxyhemoglobin, NO generation is slower; the UV-vis spectra show a gradual formation of methemoglobin. On the other hand, reduced glutathione has little effect on the NO-donor properties of the complex despite the fact that ligand substitution is observed in the system and a binuclear product is formed. Mucin binds the complex, and the decomposition mechanism is different from that for buffer solutions. Thus, these proteins and glutathione are able to participate in the transformation of the complex and modulate its properties as a potential drug.
Collapse
Affiliation(s)
- Olesya V Pokidova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Veronika O Novikova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Nina S Emel'yanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Alexandra Yu Kormukhina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1., 119991 Moscow, Russian Federation
| | - Alexander V Kulikov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1., 119991 Moscow, Russian Federation
| | - Andrey N Utenyshev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Vladimir A Lazarenko
- National Research Center 'Kurchatov Institute', pl. Academician Kurchatov, 1, 123182, Moscow, Russian Federation
| | - Nikolai S Ovanesyan
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation.
| | - Arina A Starostina
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1., 119991 Moscow, Russian Federation
| | - Natalya A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, prosp. Akad. Semenova, 1., 142432 Chernogolovka, Moscow region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University M.V. Lomonosov, Leninskie gory, 1., 119991 Moscow, Russian Federation.,Scientific and Educational Center "Medical Chemistry", Moscow State Regional Pedagogical University, st. Vera Voloshina, 24, 141014 Mytishchi, Moscow Region, Russian Federation
| |
Collapse
|
2
|
Abdinejad M, Irtem E, Farzi A, Sassenburg M, Subramanian S, Iglesias van Montfort HP, Ripepi D, Li M, Middelkoop J, Seifitokaldani A, Burdyny T. CO 2 Electrolysis via Surface-Engineering Electrografted Pyridines on Silver Catalysts. ACS Catal 2022; 12:7862-7876. [PMID: 35799769 PMCID: PMC9251727 DOI: 10.1021/acscatal.2c01654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Indexed: 12/21/2022]
Abstract
![]()
The electrochemical
reduction of carbon dioxide (CO2) to value-added materials
has received considerable attention. Both
bulk transition-metal catalysts and molecular catalysts affixed to
conductive noncatalytic solid supports represent a promising approach
toward the electroreduction of CO2. Here, we report a combined
silver (Ag) and pyridine catalyst through a one-pot and irreversible
electrografting process, which demonstrates the enhanced CO2 conversion versus individual counterparts. We find that by tailoring
the pyridine carbon chain length, a 200 mV shift in the onset potential
is obtainable compared to the bare silver electrode. A 10-fold activity
enhancement at −0.7 V vs reversible hydrogen electrode (RHE)
is then observed with demonstratable higher partial current densities
for CO, indicating that a cocatalytic effect is attainable through
the integration of the two different catalytic structures. We extended
the performance to a flow cell operating at 150 mA/cm2,
demonstrating the approach’s potential for substantial adaptation
with various transition metals as supports and electrografted molecular
cocatalysts.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Erdem Irtem
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Amirhossein Farzi
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Mark Sassenburg
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Siddhartha Subramanian
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | | | - Davide Ripepi
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Mengran Li
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Joost Middelkoop
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Ali Seifitokaldani
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Thomas Burdyny
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|