1
|
Shen C, Meng XY, Zou R, Sun K, Wu Q, Pan YX, Liu CJ. Boosted Sacrificial-Agent-Free Selective Photoreduction of CO 2 to CH 3OH by Rhenium Atomically Dispersed on Indium Oxide. Angew Chem Int Ed Engl 2024; 63:e202402369. [PMID: 38446496 DOI: 10.1002/anie.202402369] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Solar-energy-driven photoreduction of CO2 is promising in alleviating environment burden, but suffers from low efficiency and over-reliance on sacrificial agents. Herein, rhenium (Re) is atomically dispersed in In2O3 to fabricate a 2Re-In2O3 photocatalyst. In sacrificial-agent-free photoreduction of CO2 with H2O, 2Re-In2O3 shows a long-term stable efficiency which is enhanced by 3.5 times than that of pure In2O3 and is also higher than those on Au-In2O3, Ag-In2O3, Cu-In2O3, Ir-In2O3, Ru-In2O3, Rh-In2O3 and Pt-In2O3 photocatalysts. Moreover, carbon-based product of the photoreduction overturns from CO on pure In2O3 to CH3OH on 2Re-In2O3. Re promotes charge separation, H2O dissociation and CO2 activation, thus enhancing photoreduction efficiency of CO2 on 2Re-In2O3. During the photoreduction, CO is a key intermediate. CO prefers to desorption rather than hydrogenation on pure In2O3, as CO binds to pure In2O3 very weakly. Re strengthens the interaction of CO with 2Re-In2O3 by 5.0 times, thus limiting CO desorption but enhancing CO hydrogenation to CH3OH. This could be the origin for photoreduction product overturn from CO on pure In2O3 to CH3OH on 2Re-In2O3. The present work opens a new way to boost sacrificial-agent-free photoreduction of CO2.
Collapse
Affiliation(s)
- Chenyang Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Xin-Yu Meng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Rui Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Kaihang Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Qinglei Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yun-Xiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chang-Jun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, 300372, P. R. China
| |
Collapse
|
2
|
Tan KJ, Morikawa S, Hemmatifar A, Ozbek N, Liu Y, Hatton TA. Hydrophobicity Tuned Polymeric Redox Materials with Solution-Specific Electroactive Properties for Selective Electrochemical Metal Ion Recovery in Aqueous Environments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43859-43870. [PMID: 37695877 DOI: 10.1021/acsami.3c09321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Adaptable redox-active materials hold great potential for electrochemically mediated separation processes via targeted molecular recognition and reduced energy requirements. This work presents molecularly tunable vinylferrocene metallopolymers (P(VFc-co-X)) with modifiable operating potentials, charge storage capacities, capacity retentions, and analyte affinities in various electrolyte environments based on the hydrophobicity of X. The styrene (St) co-monomer impedes hydrophobic anions from ferrocene access, providing P(VFc-co-St) with specific response capabilities for and greatly improved cyclabilities in hydrophilic anions. This adjustable electrochemical stability enables preferential chromium and rhenium oxyanion separation from both hydrophobic and hydrophilic electrolytes that significantly surpasses capacitive removal by an order of magnitude, with a robust perrhenate uptake capacity of 329 mg/g VFc competitive with established metal-organic framework physisorbents and 17-fold selectivity over 20-fold excess nitrate. Pairing P(VFc-co-X) with other solution-specific electroactive macromolecules such as the pH-dependent poly(hydroquinone) (PHQ) and the cesium-selective nickel hexacyanoferrate (NiHCF) generates dual-functionalized electrosorption cells. P(VFc-co-X)//PHQ offers optimizable energetics based on X and pH for a substantial 4.6-fold reduction from 0.21 to 0.04 kWh/mol rhenium in acidic versus near-neutral media, and P(VFc-co-St)//NiHCF facilitates simultaneous extraction of rhenium, chromium, and cesium ions. Proof-of-concept reversible perrhenate separation in flow further highlights such frameworks as promising approaches for next-generation water purification technologies.
Collapse
Affiliation(s)
- Kai-Jher Tan
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Satoshi Morikawa
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ali Hemmatifar
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nil Ozbek
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yayuan Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Morgan DJ. XPS insights: Sample degradation in X‐ray photoelectron spectroscopy. SURF INTERFACE ANAL 2023. [DOI: 10.1002/sia.7205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- David J. Morgan
- Cardiff Catalysis Institute, Translational Research Hub Cardiff University Cardiff UK
- School of Chemistry Cardiff University Cardiff UK
- HarwellXPS – The EPSRC National Facility for Photoelectron Spectroscopy, Research Campus at Harwell (RCaH) Didcot UK
| |
Collapse
|
4
|
Das M, Chakraborty T, Yu Lin C, Fong Lei K, Haur Kao C. Electrochemical detection of acute renal disease biomarker by Galinstan nanoparticles interfaced to bilayer polymeric structured dirhenium heptoxide film. Bioelectrochemistry 2022; 147:108194. [PMID: 35752029 DOI: 10.1016/j.bioelechem.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
This work describes a facile fabrication of an efficient electrochemical sensor utilizing sonication-derived Galinstan nanoparticles (Galinstan NPs) interfaced to annealed dirhenium heptoxide (Re2O7) thin-film on Silicon (Si) for the quantitative detection of the most promising acute renal disease biomarker Neutrophil Gelatinase Associated Lipocalin (NGAL). Under optimized preconditions, the anti-NGAL antibodies were immobilized on the Galinstan NPs/Re2O7/Si electrode by carbodiimide crosslinking to detect NGAL. The composition, morphology, and structural properties of the electrode were elucidated by various physical characterizations. The sensor obtained a high sensitivity (0.018 µA-1ng-1ml-1, R2 = 0.99) in differential pulse voltammetry and a minimum detection limit (2.14 ng ml-1) in electrochemical impedance spectroscopy for a wide range of NGAL concentrations (25-650 ng ml-1) with high selectivity and stability. The intensified performance of the sensor was achieved by the summed-up electron transfer from the Re2O7 film to Galinstan NPs and Galinstan NPs to the electroactive reactants. Additionally, the outer 2D gallium oxide (Ga2O3) layer of Galinstan Nps enhanced the redox activities, whereas the metallic core contributed to the magnificent conductivity. The excellent recovery rates of the sensor for different concentrations of NGAL measured in commercial human serum by the standard addition method assured the feasibility of the sensor.
Collapse
Affiliation(s)
- Munmun Das
- Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC
| | - Titisha Chakraborty
- Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC
| | - Chan Yu Lin
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, No.5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan ROC
| | - Kin Fong Lei
- Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chyuan Haur Kao
- Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC; Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, No.5, Fuxing St., Guishan Dist., Taoyuan City 333, Taiwan ROC; Department of Electronic Engineering, Ming Chi University of Technology, 284 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan, ROC; Center for Green Technology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC.
| |
Collapse
|
5
|
Zhao P, Ye L, Li G, Huang C, Wu S, Ho PL, Wang H, Yoskamtorn T, Sheptyakov D, Cibin G, Kirkland AI, Tang CC, Zheng A, Xue W, Mei D, Suriye K, Tsang SCE. Rational Design of Synergistic Active Sites for Catalytic Ethene/2-Butene Cross-Metathesis in a Rhenium-Doped Y Zeolite Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pu Zhao
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Lin Ye
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Guangchao Li
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, People’s Republic of China
| | - Chen Huang
- Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Simson Wu
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Ping-Luen Ho
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
- Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Haokun Wang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Tatchamapan Yoskamtorn
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | | | - Giannantonio Cibin
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Angus I. Kirkland
- Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Chiu C. Tang
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Anmin Zheng
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, People’s Republic of China
| | - Wenjuan Xue
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, People’s Republic of China
| | - Donghai Mei
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, People’s Republic of China
- Physical and Computational Sciences Directorate & Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| |
Collapse
|
6
|
Nandi D, Siwal S, Mallick K. A carbon nitride supported copper nanoparticle composite: a heterogeneous catalyst for the N-arylation of hetero-aromatic compounds. NEW J CHEM 2017. [DOI: 10.1039/c6nj03584a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper nanoparticle catalyzed N-arylation of hetero-aromatic molecules.
Collapse
Affiliation(s)
- Debkumar Nandi
- Department of Chemistry
- University of Johannesburg
- Auckland Park 2006
- South Africa
| | - Samarjeet Siwal
- Department of Chemistry
- University of Johannesburg
- Auckland Park 2006
- South Africa
| | - Kaushik Mallick
- Department of Chemistry
- University of Johannesburg
- Auckland Park 2006
- South Africa
| |
Collapse
|