1
|
Hossain A, Ghorai K, Bhunia T, Llorca J, Vasundhara M, Bera P, Bhaskaran A, Roy S, Seikh MM, Gayen A. Cu-doped LaNiO 3 perovskite catalyst for DRM: revisiting it as a molecular-level nanocomposite. Phys Chem Chem Phys 2024; 26:26603-26621. [PMID: 39400337 DOI: 10.1039/d4cp02252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Dry reforming of methane (DRM) was extensively studied on Cu-doped LaNiO3 catalysts. The main findings of this work are as follows: (i) thermal switching of the catalyst phase between the parent perovskite and molecular-level nanocomposite of individual components formed in situ during DRM, (ii) reusability of the catalyst with enhanced activity, and (iii) regeneration of the catalyst phase at a lower temperature than that required for the formation of the parent perovskite. The present investigation provides an extensive analysis and understanding of the DRM reaction using Cu-doped LaNiO3 compared to the result reported by Moradi et al., (Chin. J. Catal., 2012, 33, 797-801) and hence provides new insights into its catalytic activity. Phase-pure LaNi1-xCuxO3 catalysts, specifically LaNi0.8Cu0.2O3, exhibited high catalytic activity towards the DRM reaction (97% CH4 and 99% CO2 conversion with an H2/CO ratio of ∼1.4-0.9). Remarkably, although the initial perovskite phase primarily decomposed into its component phases after DRM, its catalytic activity was barely affected and maintained even after 100 h. The regeneration of the initial perovskite from the disintegrated binary phases via annealing at temperatures even lower than the synthesis temperature together with the amazing retention of activity was very intriguing. The parallel activity of the pristine perovskite and its degraded binary mixtures makes it difficult to identify the actual components responsible for the DRM activity. Accordingly, we have explained the sustained activity of the degraded perovskite catalyst in the context of nanocomposite formation at the molecular level in the reforming atmosphere with the availability of Ni0 and NiO, as revealed by the thoroughly characterized samples in the as-prepared, aged, and regenerated forms.
Collapse
Affiliation(s)
- Akbar Hossain
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Kalyan Ghorai
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Trilochan Bhunia
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
| | - M Vasundhara
- Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Parthasarathi Bera
- Surface Engineering Division, CSIR-National Aerospace Laboratories, Bengaluru 560017, India
| | - Aathira Bhaskaran
- Department of Chemistry, Birla Institute of Science and Technology Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Science and Technology Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Md Motin Seikh
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| | - Arup Gayen
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
2
|
Hossain A, Bhattacharjee M, Ghorai K, Llorca J, Vasundhara M, Roy S, Bera P, Seikh MM, Gayen A. High activity in the dry reforming of methane using a thermally switchable double perovskite and in situ generated molecular level nanocomposite. Phys Chem Chem Phys 2024; 26:5447-5465. [PMID: 38275155 DOI: 10.1039/d3cp05494b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
This work emphasizes the dry reforming of methane (DRM) reaction on citrate sol-gel-synthesized double perovskite oxides. Phase pure La2NiMnO6 shows very impressive DRM activity with H2/CO = 0.9, hence revealing a high prospect of next-generation catalysts. Although the starting double perovskite phase gets degraded into mostly binary oxide phases after a few hours of DRM activity, the activity continues up to 100 h. The regeneration of the original double perovskite out of decomposed phases by annealing at near synthesis temperature, followed by the spectacular retention of activity, is rather interesting and hitherto unreported. This result unravels unique reversible thermal switching between the original double perovskite phase and decomposed phases during DRM without compromising the activity and raises challenge to understand the role of decomposed phases evolved during DRM. We have addressed this unique feature of the catalyst via structure-property relationship using the in situ generated molecular level nanocomposite.
Collapse
Affiliation(s)
- Akbar Hossain
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Monotosh Bhattacharjee
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Kalyan Ghorai
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
| | - M Vasundhara
- Polymers and Functional Materials Department, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Science and Technology Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Parthasarathi Bera
- Surface Engineering Division, CSIR - National Aerospace Laboratories, Bengaluru 560017, India
| | - Md Motin Seikh
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India.
| | - Arup Gayen
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
3
|
LaNiO3/g-C3N4 nanocomposite: An efficient Z-scheme photocatalyst for wastewater treatment using direct sunlight. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Mohan L, Kar S, Mahapatra PS, Nagai M, Santra TS. Fabrication of TiO 2 microspikes for highly efficient intracellular delivery by pulse laser-assisted photoporation. RSC Adv 2021; 11:9336-9348. [PMID: 34276967 PMCID: PMC7611284 DOI: 10.1039/d0ra09785c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The introduction of foreign cargo into living cells with high delivery efficiency and cell viability is a challenge in cell biology and biomedical research. Here, we demonstrate a nanosecond pulse laser-activated photoporation for highly efficient intracellular delivery using titanium dioxide (TiO2) microspikes as a substratum. The TiO2 microspikes were formed on titanium (Ti) substrate using an electrochemical anodization process. Cells were cultured on top of the TiO2 microspikes as a monolayer, and the biomolecule was added. Due to pulse laser exposure of the TiO2 microspike–cell membrane interface, the microspikes heat up and induce cavitation bubbles, which rapidly grow, coalesce and collapse to induce explosion, resulting in very strong fluid flow at the cell membrane surface. Thus, the cell plasma membrane disrupts and creates transient nanopores, allowing delivery of biomolecules into cells by a simple diffusion process. By this technique, we successfully delivered propidium iodide (PI) dye in HeLa cells with high delivery efficiency (93%) and high cell viability (98%) using 7 mJ pulse energy at 650 nm wavelength. Thus, our TiO2 microspike-based platform is compact, easy to use, and potentially applicable for therapeutic and diagnostic purposes. The introduction of foreign cargo into living cells with high delivery efficiency and cell viability by laser asisted photoporation on TiO2 microspikes platform.![]()
Collapse
Affiliation(s)
- L Mohan
- Department of Engineering Design, Indian Institute of Technology Madras, India.,Department of Mechanical Engineering, Toyohashi University of Technology, Japan
| | - Srabani Kar
- Department of Engineering Design, Indian Institute of Technology Madras, India.,Department of Electrical Engineering, University of Cambridge, UK
| | | | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India
| |
Collapse
|
5
|
Mohan L, Kar S, Nandhini B, Kumar SSD, Nagai M, Santra TS. Formation of nanostructures on magnesium alloy by anodization for potential biomedical applications. MATERIALS TODAY. COMMUNICATIONS 2020; 25:101403. [PMID: 34295953 PMCID: PMC7611340 DOI: 10.1016/j.mtcomm.2020.101403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the present work, we have investigated the formation of nanostructures on AZ31 magnesium alloy using electrochemical anodization technique. The formed nanostructures were efficiently showed bone-like apatite formation followed by its gradual increase, when immersed in simulated body fluid (SBF) and it exhibited controlled degradation in 7 days. Cell viability study was performed using MG-63 cells (human osteosarcoma cell lines) and revealed that the nanostructured surface has excellent biocompatibility by enhancing both cell adhesion and cell growth. The detailed characterization of this anodized surface was evaluated by field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDS). Furthermore, surface-corrosion before and after anodization was examined by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies in SBF. The in-depth studies bring out the fact that native oxide in the sample is converted to a biocompatible nanostructure, which is created due to anodization in a particular electrolyte solution containing ethylene glycol and hybrid hydrofluoric acid mixture.
Collapse
Affiliation(s)
- L. Mohan
- Department of Engineering Design, Indian Institute of Technology Madras, India
- Department of Mechanical Engineering, Toyohashi University of Technology, Japan
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, Cambridge, UK
| | - B. Nandhini
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | | | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India
| |
Collapse
|
6
|
Zhang Q, Dong J, Peng M, Yang Z, Wan Y, Yao F, Zhou J, Ouyang C, Deng X, Luo H. Laser-induced wettability gradient surface on NiTi alloy for improved hemocompatibility and flow resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110847. [DOI: 10.1016/j.msec.2020.110847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
7
|
Corrosion, wear, and cell culture studies of oxygen ion implanted Ni-Ti alloy. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|