1
|
Perović M, Jović M, Todorović S, Đorđević AM, Milanović D, Kanazir S, Lončarević-Vasiljković N. Neuroprotective effects of food restriction in a rat model of traumatic brain injury - the role of glucocorticoid signaling. Nutr Neurosci 2020; 25:537-549. [PMID: 32476608 DOI: 10.1080/1028415x.2020.1769410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is one of the most common causes of neurological damage in young and middle aged people. Food restriction (FR) has been shown to act neuroprotectively in animal models of stroke and TBI. Indeed, our previous studies showed that FR attenuates inflammation, through suppression of microglial activation and TNF-α production, suppresses caspase-3-induced neuronal cell death and enhances neuroplasticity in the rat model of TBI. Glucocorticoids (GCs) play a central role in mediating both molecular and behavioral responses to food restriction. However, the exact mechanisms of FR neuroprotection in TBI are still unclear. The goal of the present study was to examine whether FR exerts its beneficial effects by altering the glucocorticoid receptor (GR) signaling alone and/or together with other protective factors. METHODS To this end, we examined the effects of FR (50% of regular daily food intake for 3 months prior to TBI) on the protein levels of total GR, GR phosphoisoform Ser232 (p-GR) and its transcriptional activity, as well as 11β-HSD1, NFκB (p65) and HSP70 as factors related to the GR signaling. RESULTS Our results demonstrate that FR applied prior to TBI significantly changes p-GR levels, and it's transcriptional activity during the recovery period after TBI. Moreover, as a pretreatment, FR modulates other protective factors in response to TBI, such as 11β-HSD1, NF-κB (p65) and HSP70 that act in parallel with GR in it's anti-inflammatory and neuroprotective effects in the rat model of brain injury. CONCLUSION Our results suggest that prophylactic FR represents a potent non-invasive approach capable of changing GR signalling, together with other factors related to the GR signaling in the model of TBI.
Collapse
Affiliation(s)
- Milka Perović
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Milena Jović
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Smilja Todorović
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Aleksandra Mladenović Đorđević
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Desanka Milanović
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Nataša Lončarević-Vasiljković
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| |
Collapse
|
2
|
Singh S, Singh TG. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr Neuropharmacol 2020; 18:918-935. [PMID: 32031074 PMCID: PMC7709146 DOI: 10.2174/1570159x18666200207120949] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
A transcriptional regulatory nuclear factor kappa B (NF-κB) protein is a modulator of cellular biological activity via binding to a promoter region in the nucleus and transcribing various protein genes. The recent research implicated the intensive role of nuclear factor kappa B (NF-κB) in diseases like autoimmune disorder, inflammatory, cardiovascular and neurodegenerative diseases. Therefore, targeting the nuclear factor kappa B (NF-κB) protein offers a new opportunity as a therapeutic approach. Activation of IκB kinase/NF-κB signaling pathway leads to the development of various pathological conditions in human beings, such as neurodegenerative, inflammatory disorders, autoimmune diseases, and cancer. Therefore, the transcriptional activity of IκB kinase/NF- κB is strongly regulated at various cascade pathways. The nuclear factor NF-kB pathway plays a major role in the expression of pro-inflammatory genes, including cytokines, chemokines, and adhesion molecules. In response to the diverse stimuli, the cytosolic sequestered NF-κB in an inactivated form by binding with an inhibitor molecule protein (IkB) gets phosphorylated and translocated into the nucleus further transcribing various genes necessary for modifying various cellular functions. The various researches confirmed the role of different family member proteins of NF-κB implicated in expressing various genes products and mediating various cellular cascades. MicroRNAs, as regulators of NF- κB microRNAs play important roles in the regulation of the inflammatory process. Therefore, the inhibitor of NF-κB and its family members plays a novel therapeutic target in preventing various diseases. Regulation of NF- κB signaling pathway may be a safe and effective treatment strategy for various disorders.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
3
|
Dangi A, Huang C, Tandon A, Stolz D, Wu T, Gandhi CR. Endotoxin-stimulated Rat Hepatic Stellate Cells Induce Autophagy in Hepatocytes as a Survival Mechanism. J Cell Physiol 2016; 231:94-105. [PMID: 26031389 DOI: 10.1002/jcp.25055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
Bacterial lipopolysaccharide (LPS)-stimulated hepatic stellate cells (HSCs) produce many cytokines including IFNβ, TNFα, and IL6, strongly inhibit DNA synthesis, but induce apoptosis of a small number of hepatocytes. In vivo administration of LPS (up to 10 mg/mL) causes modest inflammation and weight loss in rats but not mortality. We determined whether LPS-stimulated HSCs instigate mechanisms of hepatocyte survival. Rats received 10 mg/kg LPS (i.p.) and determinations were made at 6 h. In vitro, HSCs were treated with 100 ng/mL LPS till 24 h. The medium was transferred to hepatocytes, and determinations were made at 0-12 h. Controls were HSC-conditioned medium or medium-containing LPS. LPS treatment of rats caused autophagy in hepatocytes, a physiological process for clearance of undesirable material including injured or damaged organelles. This was accompanied by activation of c-Jun NH2 terminal kinase (JNK) and apoptosis of ~4-5% of hepatocytes. In vitro, LPS-conditioned HSC medium (LPS/HSC) induced autophagy in hepatocytes but apoptosis of only ~10% of hepatocytes. While LPS/HSC stimulated activation of JNK (associated with cell death), it also activated NFkB and ERK1/2 (associated with cell survival). LPS-stimulated HSCs produced IFNβ, and LPS/HSC-induced autophagy in hepatocytes and their apoptosis were significantly inhibited by anti-IFNβ antibody. Blockade of autophagy, on the other hand, strongly augmented hepatocyte apoptosis. While LPS-stimulated HSCs cause apoptosis of a subpopulation of hepatocytes by producing IFNβ, they also induce cell survival mechanisms, which may be of critical importance in resistance to liver injury during endotoxemia.
Collapse
Affiliation(s)
- Anil Dangi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Cincinnati, and Cincinnati VA Medical Center, Cincinnati, Ohio.,Cincinnati VA Medical Center, Cincinnati, Ohio
| | - Chao Huang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ashish Tandon
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Cincinnati, and Cincinnati VA Medical Center, Cincinnati, Ohio
| | - Donna Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chandrashekhar R Gandhi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Cincinnati, and Cincinnati VA Medical Center, Cincinnati, Ohio.,Cincinnati VA Medical Center, Cincinnati, Ohio.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
4
|
Induction of TNF-α signaling cascade in neonatal rat brain during propofol anesthesia. Int J Dev Neurosci 2015; 44:22-32. [PMID: 25980792 DOI: 10.1016/j.ijdevneu.2015.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
Propofol anesthesia can trigger pro- and anti-apoptotic signaling pathways in the rat brain. In our previous work, we demonstrated that propofol causes widespread apoptotic neurodegeneration in 7-postnatal-day-old (PND7) but not in PND14 rat neurons. The mechanism responsible for these opposing outcomes is unknown, apparently linked to the specific stage of brain development. The present study aims to elucidate the anti-apoptotic process that is activated in the cortex and thalamus of PND14 Wistar rats during the first 48 h after the onset of propofol anesthesia. We showed that the expression of tumor necrosis factor-α (TNF-α) and several components of its pathway, TNFR1 and caspase-8, was significantly increased in the cortex and thalamus. Nuclear factor kappa B (NF-κB) p65 was downregulated in the cortex and upregulated in the thalamus. The expression of c-Fos was upregulated only in the cortex, showing opposed profile compared to NF-κB p65. Double immunofluorescence staining revealed the colocalization of NF-κB p65 with neuronal marker (NeuN), but with predominantly cytoplasmic localization. Finally, X-linked inhibitor of apoptosis protein (XIAP) was upregulated in both examined structures. Immunohistochemical staining with Iba-1 revealed that the treatment did not induce changes in microglial morphology. Our results (i) reveal that the simultaneous activation of pro- and anti-apoptotic signaling occurs after propofol anesthesia, and (ii) pinpoint the potential neuroprotective role of XIAP in anesthesia-induced neurotoxicity.
Collapse
|
5
|
Grimm D, Bauer J, Infanger M, Cogoli A. The use of the random positioning machine for the study of gravitational effects on signal transduction in mammalian cells. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Ungefroren H, Groth S, Fändrich F. Antioxidants and inhibitors of flavoprotein-dependent oxidases abrogate TGF-beta induction of biglycan: Evidence for a role of reactive oxygen species. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|