1
|
Nele V, Campani V, Alia Moosavian S, De Rosa G. Lipid nanoparticles for RNA delivery: Self-assembling vs driven-assembling strategies. Adv Drug Deliv Rev 2024; 208:115291. [PMID: 38514018 DOI: 10.1016/j.addr.2024.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Among non-viral vectors, lipid nanovectors are considered the gold standard for the delivery of RNA therapeutics. The success of lipid nanoparticles for RNA delivery, with three products approved for human use, has stimulated further investigation into RNA therapeutics for different pathologies. This requires decoding the pathological intracellular processes and tailoring the delivery system to the target tissue and cells. The complexity of the lipid nanovectors morphology originates from the assembling of the lipidic components, which can be elicited by various methods able to drive the formation of nanoparticles with the desired organization. In other cases, pre-formed nanoparticles can be mixed with RNA to induce self-assembly and structural reorganization into RNA-loaded nanoparticles. In this review, the most relevant lipid nanovectors and their potentialities for RNA delivery are described on the basis of the assembling mechanism and of the particle architecture.
Collapse
Affiliation(s)
- Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Seyedeh Alia Moosavian
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy.
| |
Collapse
|
2
|
Paez-Perez M, Dent MR, Brooks NJ, Kuimova MK. Viscosity-Sensitive Membrane Dyes as Tools To Estimate the Crystalline Structure of Lipid Bilayers. Anal Chem 2023; 95:12006-12014. [PMID: 37526607 PMCID: PMC10433245 DOI: 10.1021/acs.analchem.3c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Lipid membranes are crucial for cellular integrity and regulation, and tight control of their structural and mechanical properties is vital to ensure that they function properly. Fluorescent probes sensitive to the membrane's microenvironment are useful for investigating lipid membrane properties; however, there is currently a lack of quantitative correlation between the exact parameters of lipid organization and a readout from these dyes. Here, we investigate this relationship for "molecular rotors", or microviscosity sensors, by simultaneously measuring their fluorescence lifetime to determine the membrane viscosity, while using X-ray diffraction to determine the membrane's structural properties. Our results reveal a phase-dependent correlation between the membrane's structural parameters and mechanical properties measured by a BODIPY-based molecular rotor, giving excellent predictive power for the structural descriptors of the lipid bilayer. We also demonstrate that differences in membrane thickness between different lipid phases are not a prerequisite for the formation of lipid microdomains and that this requirement can be disrupted by the presence of line-active molecules. Our results underpin the use of membrane-sensitive dyes as reporters of the structure of lipid membranes.
Collapse
Affiliation(s)
- Miguel Paez-Perez
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| | - Michael R. Dent
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| | - Nicholas J. Brooks
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| | - Marina K. Kuimova
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
3
|
Dymond MK. A Membrane Biophysics Perspective on the Mechanism of Alcohol Toxicity. Chem Res Toxicol 2023. [PMID: 37186813 DOI: 10.1021/acs.chemrestox.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Motivations for understanding the underlying mechanisms of alcohol toxicity range from economical to toxicological and clinical. On the one hand, acute alcohol toxicity limits biofuel yields, and on the other hand, acute alcohol toxicity provides a vital defense mechanism to prevent the spread of disease. Herein the role that stored curvature elastic energy (SCE) in biological membranes might play in alcohol toxicity is discussed, for both short and long-chain alcohols. Structure-toxicity relationships for alcohols ranging from methanol to hexadecanol are collated, and estimates of alcohol toxicity per alcohol molecule in the cell membrane are made. The latter reveal a minimum toxicity value per molecule around butanol before alcohol toxicity per molecule increases to a maximum around decanol and subsequently decreases again. The impact of alcohol molecules on the lamellar to inverse hexagonal phase transition temperature (TH) is then presented and used as a metric to assess the impact of alcohol molecules on SCE. This approach suggests the nonmonotonic relationship between alcohol toxicity and chain length is consistent with SCE being a target of alcohol toxicity. Finally, in vivo evidence for SCE-driven adaptations to alcohol toxicity in the literature are discussed.
Collapse
Affiliation(s)
- Marcus K Dymond
- Chemistry Research and Enterprise Group, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
4
|
Bahja J, Dymond MK. Does membrane curvature elastic energy play a role in mediating oxidative stress in lipid membranes? Free Radic Biol Med 2021; 171:191-202. [PMID: 34000382 DOI: 10.1016/j.freeradbiomed.2021.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
The effects of oxidative stress on cells are associated with a wide range of pathologies. Oxidative stress is predominantly initiated by the action of reactive oxygen species and/or lipoxygenases on polyunsaturated fatty acid containing lipids. The downstream products are oxidised phospholipids, bioactive aldehydes and a range of Schiff base by-products between aldehydes and lipids, or other biomacromolecules. In this review we assess the impact of oxidative stress on lipid membranes, focusing on the changes that occur to the curvature preference (lipid spontaneous curvature) and elastic properties of membranes, since these biophysical properties modulate phospholipid homeostasis. Studies show that the lipid products of oxidative stress reduce stored curvature elastic energy in membranes. Based upon this observation, we hypothesize that the effects of oxidative stress on lipid membranes will be reduced by compounds that increase stored curvature elastic energy. We find a strong correlation appears across literature studies that we have reviewed, such that many compounds like vitamin E, Curcumin, Coenzyme Q10 and vitamin A show behaviour consistent with this hypothesis. Finally, we consider whether age-related changes in lipid composition represent the homeostatic response of cells to compensate for the accumulation of in vivo lipid oxidation products.
Collapse
Affiliation(s)
- Julia Bahja
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK
| | - Marcus K Dymond
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK.
| |
Collapse
|
5
|
Dymond MK. Lipid monolayer spontaneous curvatures: A collection of published values. Chem Phys Lipids 2021; 239:105117. [PMID: 34265278 DOI: 10.1016/j.chemphyslip.2021.105117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Lipid monolayer spontaneous curvatures (or lipid intrinsic curvatures) are one of several material properties of lipids that enable the stored curvature elastic energy in a lipid aggregate to be determined. Stored curvature elastic energy is important since it can modulate the function of membrane proteins and plays a role in the regulatory pathways of phospholipid homeostasis. Due to the large number of different lipid molecules that might theoretically exist in nature, very few lipid spontaneous curvatures have been determined. Herein the values of lipid spontaneous curvatures that exist in the literature are collected, alongside key experimental details. Where possible, trends in the data are discussed and finally, obvious gaps in the knowledge are signposted.
Collapse
Affiliation(s)
- Marcus K Dymond
- Chemistry Research and Enterprise Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, BN2 4GL, United Kingdom.
| |
Collapse
|
6
|
Páez-Pérez M, López-Duarte I, Vyšniauskas A, Brooks NJ, Kuimova MK. Imaging non-classical mechanical responses of lipid membranes using molecular rotors. Chem Sci 2020; 12:2604-2613. [PMID: 34164028 PMCID: PMC8179291 DOI: 10.1039/d0sc05874b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid packing in cellular membranes has a direct effect on membrane tension and microviscosity, and plays a central role in cellular adaptation, homeostasis and disease. According to conventional mechanical descriptions, viscosity and tension are directly interconnected, with increased tension leading to decreased membrane microviscosity. However, the intricate molecular interactions that combine to build the structure and function of a cell membrane suggest a more complex relationship between these parameters. In this work, a viscosity-sensitive fluorophore ('molecular rotor') is used to map changes in microviscosity in model membranes under conditions of osmotic stress. Our results suggest that the relationship between membrane tension and microviscosity is strongly influenced by the bilayer's lipid composition. In particular, we show that the effects of increasing tension are minimised for membranes that exhibit liquid disordered (Ld) - liquid ordered (Lo) phase coexistence; while, surprisingly, membranes in pure gel and Lo phases exhibit a negative compressibility behaviour, i.e. they soften upon compression.
Collapse
Affiliation(s)
- Miguel Páez-Pérez
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| | - Ismael López-Duarte
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
- Departamento de Química Orgánica, Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Aurimas Vyšniauskas
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
- Center of Physical Sciences and Technology Saulėtekio av. 3 Vilnius Lithuania
| | - Nicholas J Brooks
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| | - Marina K Kuimova
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| |
Collapse
|
7
|
West AL, Michaelson LV, Miles EA, Haslam RP, Lillycrop KA, Georgescu R, Han L, Napier JA, Calder PC, Burdge GC. Lipidomic Analysis of Plasma from Healthy Men and Women Shows Phospholipid Class and Molecular Species Differences between Sexes. Lipids 2020; 56:229-242. [PMID: 33284478 PMCID: PMC8048887 DOI: 10.1002/lipd.12293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
The phospholipid composition of lipoproteins is determined by the specificity of hepatic phospholipid biosynthesis. Plasma phospholipid 20:4n‐6 and 22:6n‐3 concentrations are higher in women than in men. We used this sex difference in a lipidomics analysis of the impact of endocrine factors on the phospholipid class and molecular species composition of fasting plasma from young men and women. Diester species predominated in all lipid classes measured. 20/54 Phosphatidylcholine (PtdCho) species were alkyl ester, 15/48 phosphatidylethanolamine (PtdEtn) species were alkyl ester, and 12/48 PtdEtn species were alkenyl ester. There were no significant differences between sexes in the proportions of alkyl PtdCho species. The proportion of alkyl ester PtdEtn species was greater in women than men, while the proportion of alkenyl ester PtdEtn species was greater in men than women. None of the phosphatidylinositol (PtdIns) or phosphatidylserine (PtdSer) molecular species contained ether‐linked fatty acids. The proportion of PtdCho16:0_22:6, and the proportions of PtdEtn O‐16:0_20:4 and PtdEtn O‐18:2_20:4 were greater in women than men. There were no sex differences in PtdIns and PtdSer molecular species compositions. These findings show that plasma phospholipids can be modified by sex. Such differences in lipoprotein phospholipid composition could contribute to sexual dimorphism in patterns of health and disease.
Collapse
Affiliation(s)
- Annette L West
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Louise V Michaelson
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Richard P Haslam
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ramona Georgescu
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Lihua Han
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
8
|
Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019; 58:2958-2978. [PMID: 29926520 PMCID: PMC6606436 DOI: 10.1002/anie.201804067] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Cubosomes are highly stable nanoparticles formed from the lipid cubic phase and stabilized by a polymer based outer corona. Bicontinuous lipid cubic phases consist of a single lipid bilayer that forms a continuous periodic membrane lattice structure with pores formed by two interwoven water channels. Cubosome composition can be tuned to engineer pore sizes or include bioactive lipids, the polymer outer corona can be used for targeting and they are highly stable under physiological conditions. Compared to liposomes, the structure provides a significantly higher membrane surface area for loading of membrane proteins and small drug molecules. Owing to recent advances, they can be engineered in vitro in both bulk and nanoparticle formats with applications including drug delivery, membrane bioreactors, artificial cells, and biosensors. This review outlines recent advances in cubosome technology enabling their application and provides guidelines for the rational design of new systems for biomedical applications.
Collapse
Affiliation(s)
- Hanna M. G. Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| |
Collapse
|
9
|
Macromolecular crowding and membrane binding proteins: The case of phospholipase A1. Chem Phys Lipids 2019; 218:91-102. [DOI: 10.1016/j.chemphyslip.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/10/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022]
|
10
|
|
11
|
Barriga HMG, Holme MN, Stevens MM. Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hanna M. G. Barriga
- Department of Medical Biochemistry and BiophysicsKarolinska Institute Stockholm Schweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and BiophysicsKarolinska Institute Stockholm Schweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and BiophysicsKarolinska Institute Stockholm Schweden
- Departments of Materials and Bioengineering and Institute of Biomedical EngineeringImperial College London London Großbritannien
| |
Collapse
|
12
|
Dymond MK. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo. J R Soc Interface 2017; 13:rsif.2016.0228. [PMID: 27534697 DOI: 10.1098/rsif.2016.0228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022] Open
Abstract
Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids.
Collapse
Affiliation(s)
- Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biological Sciences, University of Brighton, Brighton BN2 4GL, UK
| |
Collapse
|
13
|
Dymond MK, Gillams RJ, Parker DJ, Burrell J, Labrador A, Nylander T, Attard GS. Lipid Spontaneous Curvatures Estimated from Temperature-Dependent Changes in Inverse Hexagonal Phase Lattice Parameters: Effects of Metal Cations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10083-10092. [PMID: 27603198 DOI: 10.1021/acs.langmuir.6b03098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently we reported a method for estimating the spontaneous curvatures of lipids from temperature-dependent changes in the lattice parameter of inverse hexagonal liquid crystal phases of binary lipid mixtures. This method makes use of 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE) as a host lipid, which preferentially forms an inverse hexagonal phase to which a guest lipid of unknown spontaneous curvature is added. The lattice parameters of these binary lipid mixtures are determined by small-angle X-ray diffraction at a range of temperatures and the spontaneous curvature of the guest lipid is determined from these data. Here we report the use of this method on a wide range of lipids under different ionic conditions. We demonstrate that our method provides spontaneous curvature values for DOPE, cholesterol, and monoolein that are within the range of values reported in the literature. Anionic lipids 1,2-dioleoyl-sn-glycerol-3-phosphatidic acid (DOPA) and 1,2-dioleoyl-sn-glycerol-3-phosphoserine (DOPS) were found to exhibit spontaneous curvatures that depend on the concentration of divalent cations present in the mixtures. We show that the range of curvatures estimated experimentally for DOPA and DOPS can be explained by a series of equilibria arising from lipid-cation exchange reactions. Our data indicate a universal relationship between the spontaneous curvature of a lipid and the extent to which it affects the lattice parameter of the hexagonal phase of DOPE when it is part of a binary mixture. This universal relationship affords a rapid way of estimating the spontaneous curvatures of lipids that are expensive, only available in small amounts, or are of limited chemical stability.
Collapse
Affiliation(s)
- Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, U.K
| | - Richard J Gillams
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Duncan J Parker
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Jamie Burrell
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Ana Labrador
- MAX IV Laboratory, Lund University , PO Box 118, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University , PO Box 124, SE-221 00 Lund, Sweden
| | - George S Attard
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| |
Collapse
|
14
|
Barriga HMG, Bazin R, Templer RH, Law RV, Ces O. Buffer-induced swelling and vesicle budding in binary lipid mixtures of dioleoylphosphatidylcholine:dioleoylphosphatidylethanolamine and dioleoylphosphatidylcholine:lysophosphatidylcholine using small-angle X-ray scattering and ³¹P static NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2979-2987. [PMID: 25738977 DOI: 10.1021/la5047996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A large variety of data exists on lipid phase behavior; however, it is mostly in nonbuffered systems over nonbiological temperature ranges. We present biophysical data on lipid mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), and lysophosphatidylcholine (LysoPC) examining their behaviors in excess water and buffer systems over the temperature range 4-34 °C. These mixtures are commonly used to investigate the effects of spontaneous curvature on integral membrane proteins. Using small-angle X-ray scattering (SAXS) and (31)P NMR, we observed lamellar and vesicle phases, with the buffer causing an increase in the layer spacing. Increasing amounts of DOPE in a DOPC bilayer decreased the layer spacing of the mesophase, while the opposite trend was observed for increasing amounts of LysoPC. (31)P static NMR was used to analyze the DOPC:LysoPC samples to investigate the vesicle sizes present, with evidence of vesicle budding observed at LysoPC concentrations above 30 mol %. NMR line shapes were fitted using an adapted program accounting for the distortion of the lipids within the magnetic field. The distortion of the vesicle, because of magnetic susceptibility, varied with LysoPC content, and a discontinuity was found in both the water and buffer samples. Generally, the distortion increased with LysoPC content; however, at a ratio of DOPC:LysoPC 60:40, the sample showed a level of distortion of the vesicle similar to that of pure DOPC. This implies an increased flexibility in the membrane at this point. Commonly, the assumption is that for increasing LysoPC concentration there is a reduction in membrane tension, implying that estimations of membrane tension based on spontaneous curvature assumptions may not be accurate.
Collapse
Affiliation(s)
- Hanna M G Barriga
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Richard Bazin
- ‡Pfizer Global Research and Development, Sandwich, Kent CT13 9NJ, United Kingdom
| | - Richard H Templer
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Robert V Law
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Oscar Ces
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
15
|
Hague CV, Postle AD, Attard GS, Dymond MK. Cell cycle dependent changes in membrane stored curvature elastic energy: evidence from lipidomic studies. Faraday Discuss 2013; 161:481-97; discussion 563-89. [PMID: 23805754 DOI: 10.1039/c2fd20078c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most developed theories of phospholipid homeostasis is the intrinsic curvature hypothesis, which, in broad terms, postulates that cells regulate their lipid composition so as to keep constant the membrane stored curvature elastic energy. The implication of this hypothesis is that lipid composition is determined by a ratio control function consisting of the weighted sum of concentrations of type II lipids in the numerator and the weighted sum of concentrations of Type 0 lipids in the denominator. In previous work we used a data-driven approach, based on lipidomic data from asynchronous cell cultures, to determine a criterion that allows the different lipid species to be assigned to the set of type 0 or of type II lipids, and hence construct a ratio control function that serves as a proxy for the lipid contribution to total membrane stored curvature elastic energy in vivo. Here we apply the curvature elastic energy proxy to the analysis of lipid composition data from synchronous HeLa cells as they traverse the cell cycle. Our analysis suggests HeLa cells modify their membrane stored elastic energy through the cell cycle. In S-phase type 0 lipids are the most abundant, whilst in G2 type II lipids are most abundant. Changes in our proxy for membrane stored elastic energy correlate with membrane curvature dependent processes in the HeLa cell around division, providing some insights into the interplay between the individual lipid and protein contributions to membrane free energy.
Collapse
Affiliation(s)
- Charlotte V Hague
- Faculty of Natural and Environmental Sciences, University of Southampton, UK
| | | | | | | |
Collapse
|
16
|
Mulet X, Boyd BJ, Drummond CJ. Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions. J Colloid Interface Sci 2013; 393:1-20. [DOI: 10.1016/j.jcis.2012.10.014] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
17
|
Recent Developments in the Production, Analysis, and Applications of Cubic Phases Formed by Lipids. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-411515-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Dymond MK, Hague CV, Postle AD, Attard GS. An in vivo ratio control mechanism for phospholipid homeostasis: evidence from lipidomic studies. J R Soc Interface 2012; 10:20120854. [PMID: 23256189 DOI: 10.1098/rsif.2012.0854] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While it is widely accepted that the lipid composition of eukaryotic membranes is under homeostatic control, the mechanisms through which cells sense lipid composition are still the subject of debate. It has been postulated that membrane curvature elastic energy is the membrane property that is regulated by cells, and that lipid composition is maintained by a ratio control function derived from the concentrations of type II and type 0 lipids, weighted appropriately. We assess this proposal by seeking a signature of ratio control in quantified lipid composition data obtained by electrospray ionization mass spectrometry from over 40 independent asynchronous cell populations. Our approach revealed the existence of a universal 'pivot' lipid, which marks the boundary between type 0 lipids and type II lipids, and which is invariant between different cell types or cells grown under different conditions. The presence of such a pivot species is a distinctive signature of the operation in vivo, in human cell lines, of a control function that is consistent with the hypothesis that membrane elastic energy is homeostatically controlled.
Collapse
Affiliation(s)
- Marcus K Dymond
- Division of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | | | | | | |
Collapse
|
19
|
Gohlke A, Triola G, Waldmann H, Winter R. Influence of the lipid anchor motif of N-ras on the interaction with lipid membranes: a surface plasmon resonance study. Biophys J 2010; 98:2226-35. [PMID: 20483331 DOI: 10.1016/j.bpj.2010.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/30/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022] Open
Abstract
Ras GTPases play a crucial role in signal transduction cascades involved in cell differentiation and proliferation, and membrane binding is essential for their proper function. To determine the influence of the nature of the lipid anchor motif and the difference between the active (GTP) and inactive (GDP) forms of N-Ras on partitioning and localization in the lipid membrane, five different N-Ras constructs with different lipid anchors and nucleotide loading (Far/Far (GDP), HD/Far (GDP), HD/HD (GDP), Far (GDP), and HD/Far (GppNHp)) were synthesized. Using the surface plasmon resonance technique, we were able to follow the insertion and dissociation process of the lipidated proteins into and out of model membranes consisting of pure liquid-ordered (l(o)) or liquid-disordered (l(d)) phase and a heterogeneous two-phase mixture, i.e., a raft mixture with l(o) + l(d) phase coexistence. In addition, we examined the influence of negatively charged headgroups and stored curvature elastic stress on the binding properties of the lipidated N-Ras proteins. In most cases, significant differences were found for the various anchor motifs. In general, N-Ras proteins insert preferentially into a fluidlike, rather than a rigid, ordered lipid bilayer environment. Electrostatic interactions with lipid headgroups or stored curvature elastic stress of the membrane seem to have no drastic effect on the binding and dissociation processes of the lipidated proteins. The monofarnesylated N-Ras exhibits generally the highest association rate and fastest dissociation process in fluidlike membranes. Double lipidation, especially including farnesylation, of the protein leads to drastically reduced initial binding rates but strong final association. The change in the nucleotide loading of the natural N-Ras HD/Far induces a slightly different binding and dissociation kinetics, as well as stability of association, and seems to influence the tendency to segregate laterally in the membrane plane. The GDP-bound inactive form of N-Ras with an HD/Far anchor shows stronger membrane association, which might be due to a more pronounced tendency to self-assemble in the membrane matrix than is seen with the active GTP-bound form.
Collapse
Affiliation(s)
- Andrea Gohlke
- Faculty of Chemistry, Physical Chemistry I-Biophysical Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | | | | | | |
Collapse
|
20
|
Negishi M, Kitahata H, Yoshikawa K. Emergence of superstructures from a homogeneous lipid sphere. J Phys Chem B 2009; 113:3264-8. [PMID: 19243102 DOI: 10.1021/jp8113623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneous generation of a periodic hexagonal superstructure on a giant phospholipid sphere (GPS) with a diameter of 20-200 microm was studied. The GPS was composed of ternary phospholipids consisting of dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidylcholine (DOPC), and dioleoylphosphatidylinositol-bisphosphate (DOPIP(2)). GPSs were prepared by natural swelling of a lipid film formed on a glass substrate. A GPS with a homogeneous lipid mixture tends to form a two-layered structure between the surface and inner parts; the surface layer is attributed to a DOPIP(2) rich region (we call this layer SL), and the interior is rich in DOPE and DOPC (we call this layer IL). A hexagonal superstructure develops in the SL, and the topology then changes to form multiple-doughnut structures. Finally, myelin-like tubes are generated through symmetry breaking of the doughnutlike structures. The time-dependent change in the surface-area expansion of a GPS is shown to obey the logistic growth model, and this is attributed to the kinetic process of phase segregation between the surface and bulk phase of the GPS.
Collapse
|
21
|
Mulet X, Rosivatz E, Ho KK, Gauthé BLLE, Ces O, Templer RH, Woscholski R. Spatial localization of PtdInsP2 in phase-separated giant unilamellar vesicles with a fluorescent PLC-delta 1 PH domain. Methods Mol Biol 2009; 462:135-44. [PMID: 19160665 DOI: 10.1007/978-1-60327-115-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter describes a method for the preparation of giant unilamellar vesicles containing phosphatidylinositol 4,5-bisphosphate that are larger than 20 microm in size. The phospholipids composition of the vesicular membrane is such that fluid lamellar and liquid-ordered or gel phases are formed and separate within the confines of one vesicle. It outlines the preparation of a protein fluorescent label, pleckstrin homology domain from phospholipase C-delta 1, that binds specifically to phosphatidylinositol 4,5-bisphosphate. Using fluorescence microscopy, the presence and spatial position of this phosphorylated phosphatidylinositol lipid on the lipid membrane have been located with the pleckstrin homology domain. We show that phosphatidylinositol 4,5-bisphosphate and the phospholipase C-delta 1 pleckstrin homology domain are located to the fluid phase of the vesicle membrane. This approach can therefore show how membrane physical properties can affect enzyme binding to phosphatidylinositol 4,5-bisphosphate and thus further the understanding of important membrane processes such as endocytosis.
Collapse
Affiliation(s)
- Xavier Mulet
- Chemical Biology Centre, Imperial College, London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wikström M, Kelly AA, Georgiev A, Eriksson HM, Klement MR, Bogdanov M, Dowhan W, Wieslander A. Lipid-engineered Escherichia coli membranes reveal critical lipid headgroup size for protein function. J Biol Chem 2009; 284:954-65. [PMID: 18981182 PMCID: PMC2613627 DOI: 10.1074/jbc.m804482200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/23/2008] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli membranes have a substantial bilayer curvature stress due to a large fraction of the nonbilayer-prone lipid phosphatidylethanolamine, and a mutant (AD93) lacking this lipid is severely crippled in several membrane-associated processes. Introduction of four lipid glycosyltransferases from Acholeplasma laidlawii and Arabidopsis thaliana, synthesizing large amounts of two nonbilayer-prone, and two bilayer-forming gluco- and galacto-lipids, (i) restored the curvature stress with the two nonbilayer lipids, and (ii) diluted the high negative lipid surface charge in all AD93 bilayers. Surprisingly, the bilayer-forming diglucosyl-diacylglycerol was almost as good in improving AD93 membrane processes as the two nonbilayer-prone glucosyl-diacylglycerol and galactosyl-diacylglycerol lipids, strongly suggesting that lipid surface charge dilution by these neutral lipids is very important for E. coli. Increased acyl chain length and unsaturation, plus cardiolipin (nonbilayer-prone) content, were probably also beneficial in the modified strains. However, despite a correct transmembrane topology for the transporter LacY in the diglucosyl-diacylglycerol clone, active transport failed in the absence of a nonbilayer-prone glycolipid. The corresponding digalactosyl-diacylglycerol bilayer lipid did not restore AD93 membrane processes, despite analogous acyl chain and cardiolipin contents. Chain ordering, probed by bis-pyrene lipids, was substantially lower in the digalactosyl-diacylglycerol strain lipids due to its extended headgroup. Hence, a low surface charge density of anionic lipids is important in E. coli membranes, but is inefficient if the headgroup of the diluting lipid is too large. This strongly indicates that a certain magnitude of the curvature stress is crucial for the bilayer in vivo.
Collapse
Affiliation(s)
- Malin Wikström
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dymond MK, Attard GS. Cationic type I amphiphiles as modulators of membrane curvature elastic stress in vivo. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11743-11751. [PMID: 18795806 DOI: 10.1021/la8017612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently we proposed that the antineoplastic properties observed in vivo for alkyl-lysophospholipid and alkylphosphocholine analogues are a direct consequence of the reduction of membrane stored elastic stress induced by these amphiphiles. Here we report similar behavior for a wide range of cationic surfactant analogues. Our systematic structure-activity studies show that the cytotoxic properties of cationic surfactants follow the same pattern of activity we observed previously for alkyl-lysophospholipid analogues, indicating a common mechanism of action that is consistent with the theory that these amphiphiles reduce membrane stored elastic stress. We note that several of the cationic surfactant compounds we have evaluated are also potent antibacterial and antifungal agents. The similarity of structure-activity relationships for cationic surfactants against microorganisms and those we have observed in eukaryotic cell lines leads us to suggest the possibility that the antibacterial and antifungal properties of cationic surfactants may also be due to modulation of membrane stored elastic stress.
Collapse
Affiliation(s)
- Marcus K Dymond
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ. U.K
| | | |
Collapse
|
24
|
Mulet X, Templer RH, Woscholski R, Ces O. Evidence that phosphatidylinositol promotes curved membrane interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8443-8447. [PMID: 18646880 DOI: 10.1021/la801114n] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have identified the phase behavior of phosphoinositol (PI) lipid extracts from bovine liver and wheat in dioleoylphosphatidylcholine (DOPC) model membranes under physiological conditions (pH 7.4) and show, for the first time, that the physicochemical properties of phosphatidylinositol lipids are capable of driving changes in membrane curvature. Ten mole percent phosphoinositol (PI) extract in DOPC is sufficient to induce the formation of the inverse hexagonal (H II) and inverse micellar cubic ( Fd3 m) phases at 37 degrees C. The phase behavior of several hydrated lipid samples was analyzed using small-angle X-ray scattering, and their lattice parameters were calculated.
Collapse
Affiliation(s)
- Xavier Mulet
- The Chemical Biology Centre, Department of Chemistry, Imperial College London, South Kensington Campus, London, UK.
| | | | | | | |
Collapse
|
25
|
Abstract
We present a cellular model of lipid biosynthesis in the plasma membrane that couples biochemical and biophysical features of the enzymatic network of the cell-wall-less Mycoplasma Acholeplasma laidlawii. In particular, we formulate how the stored elastic energy of the lipid bilayer can modify the activity of curvature-sensitive enzymes through the binding of amphipathic alpha-helices. As the binding depends on lipid composition, this results in a biophysical feedback mechanism for the regulation of the stored elastic energy. The model shows that the presence of feedback increases the robustness of the steady state of the system, in the sense that biologically inviable nonbilayer states are less likely. We also show that the biophysical and biochemical features of the network have implications as to which enzymes are most efficient at implementing the regulation. The network imposes restrictions on the steady-state balance between bilayer and nonbilayer lipids and on the concentrations of particular lipids. Finally, we consider the influence of the length of the amphipathic alpha-helix on the efficacy of the feedback and propose experimental measurements and extensions of the modeling framework.
Collapse
|
26
|
Barter LMC, Klug DR, Woscholski R. Does history repeat itself? The emergence of a new discipline. ACS Chem Biol 2006; 1:737-40. [PMID: 17240968 DOI: 10.1021/cb600468u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura M C Barter
- Chemical Biology Centre, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | | | | |
Collapse
|