1
|
Majd SA, Kashanian S, Babaei M, Shekarbeygi Z. Alginate-derived carbon dots for "turn off-on" anti-neoplastic 5-fluorouracil sensing in biological samples. Biotechnol Appl Biochem 2025; 72:237-246. [PMID: 39183526 DOI: 10.1002/bab.2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
As a chemotherapy drug, 5-fluorouracil (5-FU) has been used for colon cancer for decades. Excessive levels of 5-FU in the human body can lead to notable adverse effects, including severe diarrhea, infection, mouth sores, skin peeling, skin inflammation, and ulcers, which are important and relatively common digestive side effects. In addition, 5-FU is an analog of uracil and also has similarities to pyrimidines. Therefore, it is not easy to separate them. This research presented a sensor capable of detecting drugs in minimal amounts. An alginate-derived carbon dot (CD) was synthesized by unique optical properties that obey an on-off fluorescence mechanism for 5-FU sensing. Introducing copper (Cu(I)) to CDs results in fluorescence quenching through electron transfer. However, when 5-FU is added to the system as an oxidizing agent, a redox reaction occurs on the surface of the CDs, which leads to the restoration of fluorescence as Cu(I) is altered to Cu(II). Experimental results showed a strong linear correlation (R2 = 0.99) in the concentration range of 1.00-45.00 nM, with the following linear regression, and revealed the relative standard deviation (RSD%) and detection limit of 2.57%, and 1.00 nM, respectively. These results validated the excellent detection capability of the proposed method even at low concentrations of 5-FU and in the presence of other drugs and interfering substances. Also, the recovery of 5-FU (varies from 100.46% to 113.7%, with RSD equal to 1.89-3.63) in serum samples indicates the absence of matrix interference in the determination of 5-FU. In summary, this novel approach to developing a cost-effective and sensitive sensor holds great potential for future applications in healthcare and related fields.
Collapse
Affiliation(s)
- Sasan Abbasi Majd
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center, Razi University, Kermanshah, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| | - Mahsa Babaei
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Zahra Shekarbeygi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Zahara FN, Keshavayya J, Krishnamurthy C, Pallavi KM. Live Cell Imaging Studies on Orange Emitting Thiazole-Pyridone Azo Fluorophore and Its Latent Fingerprints, Computational, Electrochemical Sensing for Dopamine Detection. LUMINESCENCE 2024; 39:e70003. [PMID: 39467663 DOI: 10.1002/bio.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024]
Abstract
The fluorescent materials have sparked a lot of research interests due to their unique electronic, optical and chemical characteristics. Here, we are intended to present a simple and facile synthesis of novel orange emitting thiazole-pyridone fluorescent tag (TPFT) by a simple diazo coupling reaction and the structural elucidation was carried out by IR, NMR (1H and 13C), UV-Vis, photoluminescence and HR-MS spectrometry. The solvatochromic behaviour of the TPFT offered crucial information about the formation of hydrazone and azo tautomeric forms. The DFT simulations are computed to calculate HOMO-LUMO energy gap (3.028 eV) of TPFT along with MEP and RDG analyses. Comprehensive LFP visualization is revealed under both normal and UV light conditions (365 nm). The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyse the electrochemical behaviour of the TPFT-modified glassy carbon electrode (MGCE) and exhibited a lower detection limit of 7.89 × 10-8 M (S/N = 3) with a linear range of 0.5-8.0 μM for DA detection. The live-cell imaging study of TPFT showed a strong blue emission at 453 nm, which generally indicates the existence of fluorescence stability.
Collapse
Affiliation(s)
- Fiza Noor Zahara
- Department of PG Studies and Research in Chemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - J Keshavayya
- Department of PG Studies and Research in Chemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - Chethan Krishnamurthy
- Department of PG Studies and Research in Chemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - K M Pallavi
- Department of Studies in Chemistry, Davangere University, Davangere, Karnataka, India
| |
Collapse
|
3
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Chamorro Cañon JD, Luna MA, Sabini MC, Molina PG, Correa NM. Electrochemical Characterization of the Encapsulation and Release of 5-Fluorouracil in Nanocarriers Formed from Soy Lecithin Vesicles. J Phys Chem B 2024; 128:5427-5436. [PMID: 38808516 DOI: 10.1021/acs.jpcb.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
5-Fluorouracil (5-FU) is an antineoplastic agent known for its low bioavailability and limited cellular penetration, often resulting in adverse effects on healthy cells. Thus, finding vehicles that enhance bioavailability, enable controlled release, and mitigate adverse effects is crucial. The study focuses on encapsulating 5-FU within soy lecithin vesicles (SLVs) and assessing its impact on the carrier's properties and functionality. Results show that incorporating 5-FU does not affect SLVs' size or polydispersity, even postlyophilization. Liberation of 5-FU from SLVs requires system disruption rather than spontaneous release, with an encapsulation efficiency of approximately 43% determined using Square Wave Voltammetry. Cytotoxicity assays on colorectal cancer cells reveal SLV-based delivery's significant efficacy, surpassing free drug solution effects with 45% cell viability after 72 h vs 73% viability. The research addresses 5-FU's limited bioavailability by creating a biocompatible nanocarrier for efficient drug delivery, highlighting SLVs as promising for targeted cancer therapy due to sustained antiproliferative effects and improved cellular uptake. The study underscores the importance of tailored drug delivery systems in enhancing therapeutic outcomes and suggests SLV/5-FU formulations as a potential advancement in cancer treatment strategies.
Collapse
Affiliation(s)
- J David Chamorro Cañon
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - M Alejandra Luna
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - M Carola Sabini
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Universidad Nacional de Córdoba, Blvd de la Reforma and Enfermera Gordillo Gómez, C.P. X5016 Córdoba, Argentina
| | - Patricia G Molina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| |
Collapse
|
5
|
Jiang YX, Rani A, Nguyen NT, Nguyen TMP, Chang CT. Electrochemical detection of oxytetracycline employing sugarcane carbon modified graphite electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41734-41744. [PMID: 38030840 DOI: 10.1007/s11356-023-31090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
The present study used CeO2-Co3O4 quantum dots@porous carbon/multiwalled carbon nanotube (CeO2-Co3O4 QDs@PC/MWCNT/GE) composites to modify graphite electrodes to fabricate high-sensitivity electrochemical sensors to detect the presence of oxytetracycline (OTC). The quantum dots were made from waste sugarcane bagasse. The electrochemical analysis demonstrated the superior electrochemical performance of CeO2-Co3O4 QDs@PC/MWCNT/GE, with a peak current density of 1.276 mA/cm2. Electrochemical impedance spectroscopy (EIS) revealed lower impedance values for CeO2-Co3O4 QDs@PC/MWCNT/GE compared to other electrodes, indicating enhanced conductivity. The modified electrode exhibited an enlarged electrochemically active area, with values of 0.602 cm2, almost seven times that of the bare graphite electrode (0.079 cm2). The results showed that the CeO2-Co3O4 QDs@PC/MWCNT/GE had excellent performance for OTC detection, and its linear calibration range was 1.007 × 10-8 to 2.04 × 10-7 M (i.e., 0.005-0.1 ppm) and 1.007 × 10-6 to 1.209 × 10-4 M (i.e., 0.5-60 ppm). The limit of detection and limit of quantification were 1.23 nM (0.61 ppb) and 4.09 nM (2.03 ppb) (S/N = 3), respectively. The electrode demonstrated long-term stability for up to 7 weeks. This method provides a new way to prepare electrochemical sensors for OTC detection.
Collapse
Affiliation(s)
- Ya-Xuan Jiang
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan ROC
- Department of Environmental Engineering, National Chung Hsing University, Hsinchu, 26047, Taiwan ROC
| | - Aishwarya Rani
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan ROC
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan ROC
| | - Nhat-Thien Nguyen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan ROC
| | - Thi-Minh-Phuong Nguyen
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Chang-Tang Chang
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan ROC.
| |
Collapse
|
6
|
Pradeepa E, Arthoba Nayaka Y, Sahana HR. Electrochemical investigation of an anticancer drug 5-Fluorouracil in the presence of Theophylline using low-cost and disposable poly(GLY) modified pencil graphite electrode. Anal Biochem 2024; 687:115451. [PMID: 38154624 DOI: 10.1016/j.ab.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Herein this study, a facile, efficient and disposable electrochemical sensor has been prepared by electropolymerization of glycine (poly(GLY)) on the surface of pencil graphite electrode (PGE). The surface topology of the equipped poly(GLY) modified pencil graphite electrode (poly(GLY)/PGE) and bare pencil graphite electrode (BPGE) has been characterized by the scanning electron microscopy (SEM) combined with energy dispersive x-ray analysis (EDX) and charge transfer behaviour was measured by electron impedance spectroscopy (EIS) method. The voltammetric behaviour of anticancer, 5-fluorouracil (5-FU) in the presence of theophylline (THP) has been carried out in 0.1 M phosphate buffer solution (PBS) of physiological pH 7.0 using different techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV). The proposed poly(GLY)/PGE shows augmented peak current for 5-FU at lower potential side over the BPGE due to the electrocatalytic behaviour of modifier layers wrapped on the electrode surface. The kinetic behaviour of 5-FU at modified electrode surface was studied by varying different parameters such as pH, scan rate and concentration study in 0.1 M PBS used as a supporting electrolyte. The limit of detection (LOD) for 5-FU was attained using DPV method with different concentrations (1.0-13.0 μM) and it was found to be 0.012 μM. The possible electrochemical reaction of 5-FU was proposed and it was incorporated by two electrons and two protons mechanism at modified electrode surface. The voltammetric response of poly(GLY)/PGE towards the determination of 5-FU was unaffected in the presence of some excipients in addition to the remarkable stability and reproducibility. The applicability of the proposed sensor has been performed by real sample investigation of 5-FU with a substantial percentage of recovery results in all optimized conditions.
Collapse
Affiliation(s)
- E Pradeepa
- Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - Y Arthoba Nayaka
- Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Shivamogga, Karnataka, India.
| | - H R Sahana
- Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Shivamogga, Karnataka, India
| |
Collapse
|
7
|
Kanthappa B, Manjunatha JG, Hareesha N, Tighezza AM, Albaqami MD, Sillanpää M. Electrochemically Polymerized DL‐Phenylalanine‐Deposited Graphene Paste Electrode for the Detection of Rutin. ChemistrySelect 2023. [DOI: 10.1002/slct.202204147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- B. Kanthappa
- Department of Chemistry FMKMC College Madikeri Mangalore University Constituent College 571201 Karnataka India
| | - J. G. Manjunatha
- Department of Chemistry FMKMC College Madikeri Mangalore University Constituent College 571201 Karnataka India
| | - N. Hareesha
- Department of Chemistry FMKMC College Madikeri Mangalore University Constituent College 571201 Karnataka India
| | - Ammar M. Tighezza
- Department of Chemistry College of Science King Saud University 11451 Riyadh Saudi Arabia
| | - Munirah D. Albaqami
- Department of Chemistry College of Science King Saud University 11451 Riyadh Saudi Arabia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering Aarhus University Norrebrogade 44 8000 Aarhus C Denmark
| |
Collapse
|
8
|
Manjunatha L, Kumara Swamy B, Manjunatha K. Cadmium oxide nanoparticle modified carbon paste electrode sensor for sulfadiazine: A voltammetric study. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Ebrahimian J, Khayatkashani M, Soltani N, Mohammed HT, Tavakkoli N, Jafari M, Salavati-Niasari M. Rosa Damascena mediated ZnO-Red Ochre nanocomposite for the electrochemical determination of 5-Fluorouracil. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
10
|
Moulya KP, Manjunatha JG, Aljuwayid AM, Habila MA, Sillanpaa M. Polymer modified Carbon Paste Electrode as the Sensor for the Analysis of Tartrazine. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
11
|
Raeisi‐Kheirabadi N, Nezamzadeh‐Ejhieh A. The Experimental Design Approach in Square‐Wave Voltammetric Determination of Tamoxifen by NiO‐CPE**. ChemistrySelect 2022. [DOI: 10.1002/slct.202203788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Neda Raeisi‐Kheirabadi
- Department of Chemistry Shahreza Branch Islamic Azad University, P.O. Box 311- 86145 Shahreza Isfahan Iran
| | - Alireza Nezamzadeh‐Ejhieh
- Department of Chemistry Shahreza Branch Islamic Azad University, P.O. Box 311- 86145 Shahreza Isfahan Iran
| |
Collapse
|
12
|
Sawkar RR, Shanbhag MM, Tuwar SM, Mondal K, Shetti NP. Sodium Dodecyl Sulfate-Mediated Graphene Sensor for Electrochemical Detection of the Antibiotic Drug: Ciprofloxacin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7872. [PMID: 36431357 PMCID: PMC9696905 DOI: 10.3390/ma15227872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The present study involves detecting and determining CIP by a new electrochemical sensor based on graphene (Gr) in the presence of sodium dodecyl sulfate (SDS) employing voltammetric techniques. Surface morphology studies of the sensing material were analyzed using a scanning electron microscope (SEM) and atomic force microscope (AFM). In the electroanalysis of CIP at the developed electrode, an enhanced anodic peak response was recorded, suggesting the electro-oxidation of CIP at the electrode surface. Furthermore, we evaluated the impact of the electrolytic solution, scan rate, accumulation time, and concentration variation on the electrochemical behavior of CIP. The possible electrode mechanism was proposed based on the acquired experimental information. A concentration variation study was performed using differential pulse voltammetry (DPV) in the lower concentration range, and the fabricated electrode achieved a detection limit of 2.9 × 10-8 M. The proposed sensor detected CIP in pharmaceutical and biological samples. The findings displayed good recovery, with 93.8% for tablet analysis and 93.3% to 98.7% for urine analysis. The stability of a developed electrode was tested by inter- and intraday analysis.
Collapse
Affiliation(s)
- Rakesh R. Sawkar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
| | - Mahesh M. Shanbhag
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580027, Karnataka, India
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
| | - Kunal Mondal
- Idaho National Laboratory, Idaho Falls, ID 83415, USA
- Department of Civil & Environmental Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
13
|
Sawkar RR, Shanbhag MM, Tuwar SM, Veerapur RS, Shetti NP. Glucose Incorporated Graphite Matrix for Electroanalysis of Trimethoprim. BIOSENSORS 2022; 12:909. [PMID: 36291048 PMCID: PMC9599278 DOI: 10.3390/bios12100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The antibiotic drug trimethoprim (TMP) is used to treat bacterial infections in humans and animals, and frequently TMP is used along with sulfonamides. However, a large portion of TMP is excreted in its active state, which poses a severe problem to humans and the environment. A sensitive, rapid, cost-effective analytical tool is required to monitor the TMP concentration in biological and environmental samples. Hence, this study proposed an analytical methodology to analyze TMP in clinical, biological and environmental samples. The investigations were carried out using a glucose-modified carbon paste electrode (G-CPE) employing voltammetric techniques. Electrochemical behavior was examined with 0.5 mM TMP solution at optimum pH 3.4 (Phosphate Buffer Solution, I = 0.2 M). The influence of scan rate on the electro-oxidation of TMP was studied within the range of 0.05 to 0.55 V/s. The effect of pH and scan rate variations revealed proton transfer during oxidation. Moreover, diffusion phenomena governed the irreversibility of the electrode reaction. A probable and suitable electrode interaction and reaction mechanism was proposed for the electrochemical oxidation of TMP. Further, the TMP was quantitatively estimated with the differential pulse voltammetry (DPV) technique in the concentration range from 9.0 × 10-7 to 1.0 × 10-4 M. The tablet, spiked water and urine analysis demonstrated that the selected method and developed electrode were rapid, simple, sensitive, and cost-effective.
Collapse
Affiliation(s)
- Rakesh R. Sawkar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, India
| | - Mahesh M. Shanbhag
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580027, India
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, India
| | - Ravindra S. Veerapur
- Department of Metallurgy & Materials Engineering, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe 5196, Malawi
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, India
| |
Collapse
|
14
|
Ilager D, Malode SJ, Shetti NP. Development of 2D graphene oxide sheets-based voltammetric sensor for electrochemical sensing of fungicide, carbendazim. CHEMOSPHERE 2022; 303:134919. [PMID: 35568220 DOI: 10.1016/j.chemosphere.2022.134919] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Incorporating new pollutants and environmental pollution has become a formidable issue as new pollutants are introduced into it and have become a significant concern in recent years. Detection of such pollutants needs a susceptible, selective, and cost-effective sensor that can sense their presence and quantify them at a trace level. In the present study, we have designed a 2D graphene oxide (GO)-based glassy carbon electrode (GCE) electrochemical sensor (GO/GCE) and utilized it as a sensing material for the detection and determination of CRZ. The voltammetric behavior of CRZ was studied using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. The SWV was applied to quantify and analyze CRZ in actual samples. A better response of CRZ was noticed at GO/GCE when phosphate buffer solution of pH 4.2 was used as a supporting electrolyte for to experiment. The SWV technique achieved trace-level detection of CRZ. A linearity plot was obtained for the concentration range of 1.0 × 10-7 M to 2.5 × 10-4 M with a limit of detection of 1.38 × 10-8 M. The selectivity of the modified sensor was verified by the interference study of metal ions and other pesticides with CRZ. The agricultural and environmental significance of the developed method was successfully tested by estimating CRZ in water and soil samples.
Collapse
Affiliation(s)
- Davalasab Ilager
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580030, Karnataka, India
| | - Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| |
Collapse
|
15
|
dos Santos AM, Junior AGT, Carvalho SG, Chorilli M. An updated review on properties, nanodelivery systems, and analytical methods for the determination of 5-fluorouracil in pharmaceutical and biological samples. Curr Pharm Des 2022; 28:1501-1512. [DOI: 10.2174/1381612828666220509150918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP). Currently, there are several nanodelivery systems being developed and evaluated at the preclinical level to overcome existing limitations to 5-FU chemotherapy, including liposomes, polymeric nanoparticles, polymeric micelles, nanoemulsions, mesoporous silica nanoparticles, and solid lipid nanoparticles. Therefore, it is essential to choose and develop suitable analytical methods for the quantification of 5-FU and its metabolites (5-fluorouridine and 5-fluoro-2-deoxyuridine) in pharmaceutical and biological samples. Among the analytical techniques, chromatographic methods are commonly the most used for the quantification of 5-FU from different matrices. However, other analytical methods have also been developed for the determination of 5-FU, such as electrochemical methods, a sensitive, selective, and precise technique, in addition to having a reduced cost. Here, we first review the physicochemical properties, mechanism of action, and advances in 5-FU nanodelivery systems. Next, we summarize the current progress of other chromatographic methods described to determine 5-FU. Lastly, we discuss the advantages of electrochemical methods for the identification and quantification of 5-FU and its metabolites in pharmaceutical and biological samples.
Collapse
Affiliation(s)
- Aline Martins dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | | | - Suzana Gonçalves Carvalho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
16
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
17
|
Vernekar PR, Shanbhag MM, G M, Shetti NP, Mascarenhas RJ. Silica‐gel incorporated carbon paste sensor for the electrocatalytic oxidation of famotidine and its application in biological sample analysis. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Mahesh Mohan Shanbhag
- Department of Chemistry K.L.E. Institute of Technology, Gokul Hubballi Karnataka India
| | - Manasa G
- Electrochemistry Research Group St. Joseph's College Bangalore Karnataka India
| | | | | |
Collapse
|
18
|
Sawkar RR, Patil VB, Shanbhag MM, Shetti NP, Tuwar SM, Aminabhavi TM. Detection of ketorolac drug using pencil graphite electrode. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Patil VB, Sawkar RR, Ilager D, Shetti NP, Tuwar SM, Aminabhavi TM. Glucose‐based carbon electrode for trace‐level detection of acetaminophen. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vinoda B. Patil
- Department of Chemistry Karnatak Science College Dharwad Karnataka India
| | - Rakesh R. Sawkar
- Department of Chemistry Karnatak Science College Dharwad Karnataka India
| | - Davalasab Ilager
- Center for Electrochemical Science and Materials, Department of Chemistry K.L.E. Institute of Technology Hubballi Karnataka India
| | - Nagaraj P. Shetti
- School of Advanced Sciences KLE Technological University Vidyanagar Hubballi Karnataka 580031 India
| | - Suresh M. Tuwar
- Department of Chemistry Karnatak Science College Dharwad Karnataka India
| | | |
Collapse
|
20
|
Efficient Electrochemical Determination of Catechol with Hydroquinone at Poly (L‐Serine) Layered Carbon Paste Electrode. ChemistrySelect 2021. [DOI: 10.1002/slct.202101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
|
22
|
Wang J, Qu X, Zhao L, Yan B. Fabricating Nanosheets and Ratiometric Detection of 5-Fluorouracil by Covalent Organic Framework Hybrid Material. Anal Chem 2021; 93:4308-4316. [PMID: 33616391 DOI: 10.1021/acs.analchem.0c05309] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covalent organic framework (COF) nanosheets (NSs) are a new member in the family of two-dimensional (2D) nanomaterials that received increasing attention. The ability to prepare COF NSs with rapid acquisition is of great importance to explore their distinctive properties and potential applications. Herein, we elaborate design a new COF hybrid material EB-TFP:Eu(BTA)4 as a sensing platform. In the process of ratiometric fluorescence detection of 5-fluorouracil (5FU), an anticancer drug, we realize the preparation of COF NSs. Interaction occurs between 5FU and COF hybrid material, where the interlayer π-π stacking of COF was weakened, benefiting the exfoliation of bulk COF to acquire 2D COF NSs. This strategy provides not only a sensitive and selective 5FU sensor but also a significant inspiration for engineering 2D COF NSs.
Collapse
Affiliation(s)
- Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xianglong Qu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.,School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
23
|
Ilager D, Shetti NP, Malladi RS, Shetty NS, Reddy KR, Aminabhavi TM. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Vernekar PR, Purohit B, Shetti NP, Chandra P. Glucose modified carbon paste sensor in the presence of cationic surfactant for mefenamic acid detection in urine and pharmaceutical samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Functional nanostructured metal oxides and its hybrid electrodes – Recent advancements in electrochemical biosensing applications. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105522] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Shanbhag MM, Shetti NP, Kulkarni RM, Chandra P. Nanostructured Ba/ZnO modified electrode as a sensor material for detection of organosulfur thiosalicylic acid. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Manjunatha Charithra M, Manjunatha JG. Electrochemical Sensing of Paracetamol Using Electropolymerised and Sodium Lauryl Sulfate Modified Carbon Nanotube Paste Electrode. ChemistrySelect 2020. [DOI: 10.1002/slct.202002626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Jamballi G. Manjunatha
- Department of Chemistry FMKMC College, Constituent College of Mangalore University Madikeri Karnataka India
| |
Collapse
|
28
|
New reductant-free synthesis of gold nanoparticles-doped chitosan-based semi-IPN nanogel: A robust nanoreactor for exclusively sensitive 5-fluorouracil sensor. Int J Biol Macromol 2020; 148:79-88. [DOI: 10.1016/j.ijbiomac.2020.01.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
|
29
|
Pushpanjali PA, Manjunatha JG, Shreenivas MT. The Electrochemical Resolution of Ciprofloxacin, Riboflavin and Estriol Using Anionic Surfactant and Polymer‐Modified Carbon Paste Electrode. ChemistrySelect 2019. [DOI: 10.1002/slct.201903897] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pemmatte A. Pushpanjali
- Department of ChemistryFMKMC CollegeMadikeriMangalore University Constituent College, Karnataka India
| | - Jamballi G. Manjunatha
- Department of ChemistryFMKMC CollegeMadikeriMangalore University Constituent College, Karnataka India
| | - Mellekatte T. Shreenivas
- Department of P.G. Studies and Research in Industrial ChemistryKuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka India
| |
Collapse
|
30
|
Şenocak A, Basova T, Demirbas E, Durmuş M. Direct and Fast Electrochemical Determination of Catechin in Tea Extracts using SWCNT‐Subphthalocyanine Hybrid Material. ELECTROANAL 2019. [DOI: 10.1002/elan.201900214] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ahmet Şenocak
- Department of ChemistryGebze Technical University 41400 Gebze, Kocaeli Turkey
| | - Tamara Basova
- Nikolaev Institutes of Inorganic Chemistry SB RAS Lavrentiev Pr. 3 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova Str. 2 Russia
| | - Erhan Demirbas
- Department of ChemistryGebze Technical University 41400 Gebze, Kocaeli Turkey
| | - Mahmut Durmuş
- Department of ChemistryGebze Technical University 41400 Gebze, Kocaeli Turkey
| |
Collapse
|
31
|
Tigari G, Manjunatha JG, Raril C, Hareesha N. Determination of Riboflavin at Carbon Nanotube Paste Electrodes Modified with an Anionic Surfactant. ChemistrySelect 2019. [DOI: 10.1002/slct.201803191] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Girish Tigari
- Department of chemistry FMKMC College Madikeri; Mangalore University Constituent College, Karnataka; India
| | - Jamballi G. Manjunatha
- Department of chemistry FMKMC College Madikeri; Mangalore University Constituent College, Karnataka; India
| | - Chenthatill Raril
- Department of chemistry FMKMC College Madikeri; Mangalore University Constituent College, Karnataka; India
| | - Nagarajappa Hareesha
- Department of chemistry FMKMC College Madikeri; Mangalore University Constituent College, Karnataka; India
| |
Collapse
|
32
|
Tigari G, Manjunatha J, Ravishankar D, Siddaraju G. Enhanced Electrochemical Determination Of Riboflavin In Biological And Pharmaceutical Samples At Poly (Arginine) Modified Carbon Paste Electrode. ACTA ACUST UNITED AC 2019. [DOI: 10.17721/moca.2019.216-223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An electrogenerated Polyarginine modified carbon paste electrode (PAMCPE) was fabricated through a simple electropolymerization procedure. The devised electrode was characterized by cyclic voltammetry (CV) and Field Emission Scanning Electron Microscopy (FESEM). This electrode was utilized for electrocatalytic estimation of Riboflavin (RF) and its instantaneous resolution with ascorbic acid (AA) and folic acid (FA) in phosphate buffer solution (PBS) of pH 6.0 by differential pulse voltammetry (DPV). It was observed to be a very responsive electrode for the electrochemical detection and quantification of RF. It was revealed that PAMCPE generates higher current response towards RF contrast to the bare carbon paste electrode (BCPE). Under optimized condition, the RF oxidation current values were linearly reliant on the RF concentration increment with a limit of detection (LOD) of 9.3·10-8 M using DPV. The stable PAMCPE was effectively applied for estimation of RF in B-complex pill and complex human blood serum samples.
Collapse
Affiliation(s)
- Girish Tigari
- Department of chemistry FMKMC College, Madikeri, Mangalore university constituent college, Karnataka, India
| | - J.G. Manjunatha
- Department of chemistry FMKMC College, Madikeri, Mangalore university constituent college, Karnataka, India
| | - D.K. Ravishankar
- Department of chemistry FMKMC College, Madikeri, Mangalore university constituent college, Karnataka, India
| | - G. Siddaraju
- Department of chemistry FMKMC College, Madikeri, Mangalore university constituent college, Karnataka, India
| |
Collapse
|
33
|
Devarushi US, Shetti NP, Bukkitgar SD, Tuwar SM. Electrochemical Behavior of an Anti-Viral Drug Valacyclovir at Carbon Paste Electrode and Its Analytical Application. RUSS J ELECTROCHEM+ 2018. [DOI: 10.1134/s1023193518100026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Turkay O, Barışçı S, Ulusoy E, Şeker MG, Dimoglo A. Anodic oxidation of anti-cancer drug Imatinib on different electrodes: Kinetics, transformation by-products and toxicity assessment. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Graphene oxides/multi-walled carbon nanotubes hybrid-modified carbon electrodes for fast and sensitive voltammetric determination of the anticancer drug 5-fluorouracil in spiked human plasma samples. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0295-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
D'Souza OJ, Mascarenhas RJ, Satpati AK, Mane V, Mekhalif Z. Application of a Nanosensor Based on MWCNT-Sodium Dodecyl Sulphate Modified Electrode for the Analysis of a Novel Drug, Alpha-Hydrazinonitroalkene in Human Blood Serum. ELECTROANAL 2017. [DOI: 10.1002/elan.201700114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ozma J D'Souza
- Research and Development Centre; Bharathiar University; Coimbatore - 641 014, Tamil Nadu India
| | - Ronald J Mascarenhas
- Research and Development Centre; Bharathiar University; Coimbatore - 641 014, Tamil Nadu India
- Electrochemistry Research Group, Department of Chemistry; St. Joseph's College; Lalbagh Road Bangalore - 560 027 Karnataka India
| | - Ashis K Satpati
- Analytical Chemistry Division, Bhabha Atomic Research Centre; Anushakthi Nagar, Trombay; Mumbai - 400 094, Maharashtra India
| | - Vaijinath Mane
- Department of Chemistry; Indian Institute of Technology; Bombay, Mumbai - 400 076 India
| | - Zineb Mekhalif
- Laboratoire de Chimie et d'Electrochimie des Surface; University of Namur; 61 Rue de Bruxelles B-5000 Namur Belgium
| |
Collapse
|