1
|
Zhang W, Xu Y, Venkatesh A, Hung I, Li S, Gan Z, Huang Y. Pushing Limits of Ultra-wideline Solid-State NMR Spectroscopy: NMR Signatures of 209Bi and 127I in Metal-Organic Frameworks at Ultra-high Magnetic Fields. J Am Chem Soc 2025; 147:10823-10828. [PMID: 40105145 DOI: 10.1021/jacs.4c17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Bismuth- and iodine-containing metal-organic frameworks (MOFs) are crucial in catalysis, gas adsorption, and luminescence, with local environments of Bi and I ions shaping their performance. Using 209Bi and 127I solid-state NMR (SSNMR) for characterization is extremely challenging due to the exceedingly large quadrupolar interactions in MOFs. Here, we present ultra-wideline (UW) SSNMR spectra of eight MOFs acquired at ultra-high magnetic fields up to 36 T, with breadths of 8-50 MHz, revealing very large quadrupolar couplings. These spectra uncover key structural details, including dehydration, guest adsorption, phase transitions, and disorder. This study establishes 209Bi and 127I UW SSNMR as powerful tools for probing Bi and I ions in weight-dilute systems, offering broad applications in catalysis, solar cells, biochemistry, and beyond.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yijue Xu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Ivan Hung
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Shuting Li
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
Gabbani A, Della Latta E, Mohan A, Scarperi A, Li X, Ruggeri M, Martini F, Biccari F, Kociak M, Geppi M, Borsacchi S, Pineider F. Direct Determination of Carrier Parameters in Indium Tin Oxide Nanocrystals. ACS NANO 2024; 18:15139-15153. [PMID: 38804721 DOI: 10.1021/acsnano.4c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We develop here a comprehensive experimental approach to independently determine charge carrier parameters, namely, carrier density and mass, in plasmonic indium tin oxide nanocrystals. Typically, in plasmonic nanocrystals, only the ratio between these two parameters is accessible through optical absorption experiments. The multitechnique methodology proposed here combines single particle and ensemble optical and magneto-optical spectroscopies, also using 119Sn solid-state nuclear magnetic resonance spectroscopy to probe the surface depletion layer. Our methodology overcomes the limitations of standard fitting approaches based on absorption spectroscopy and ultimately gives access to carrier effective mass directly on the NCs, discarding the use of literature value based on bulk or thin film materials. We found that mass values depart appreciably from those measured on thin films; consequently, we found carrier density values that are different from reported literature values for similar systems. The effective mass was found to deviate from the parabolic approximation at a high carrier density. Finally, the dopant activation and defect diagram for ITO NCs for tin doping between 2.5 and 15% are determined. This approach can be generalized to other plasmonic heavily doped semiconductor nanostructures and represents, to the best of our knowledge, the only method to date to characterize the full Drude parameter space of 0-D nanosystems.
Collapse
Affiliation(s)
- Alessio Gabbani
- Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Department of Physics and Astronomy, Università degli Studi di Firenze, via Sansone 1, 50019 Sesto Fiorentino, (FI), Italy
| | - Elisa Della Latta
- Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Ananthakrishnan Mohan
- Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Andrea Scarperi
- Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Xiaoyan Li
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Marina Ruggeri
- Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Francesca Martini
- Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), 56124 Pisa, Italy
| | - Francesco Biccari
- Department of Physics and Astronomy, Università degli Studi di Firenze, via Sansone 1, 50019 Sesto Fiorentino, (FI), Italy
| | - Mathieu Kociak
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Marco Geppi
- Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Institute of Chemistry of Organometallic Compounds, Italian National Research Council (ICCOM-CNR), via G. Moruzzi 1, 56124 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), 56124 Pisa, Italy
| | - Silvia Borsacchi
- Institute of Chemistry of Organometallic Compounds, Italian National Research Council (ICCOM-CNR), via G. Moruzzi 1, 56124 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), 56124 Pisa, Italy
| | - Francesco Pineider
- Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Department of Physics and Astronomy, Università degli Studi di Firenze, via Sansone 1, 50019 Sesto Fiorentino, (FI), Italy
| |
Collapse
|
3
|
Lamahewage SNS, Atterberry BA, Dorn RW, Gi E, Kimball MR, Blümel J, Vela J, Rossini AJ. Accelerated acquisition of wideline solid-state NMR spectra of spin 3/2 nuclei by frequency-stepped indirect detection experiments. Phys Chem Chem Phys 2024; 26:5081-5096. [PMID: 38259035 DOI: 10.1039/d3cp05055f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
73% of all NMR-active nuclei are quadrupolar nuclei with a nuclear spin I > 1/2. The broadening of the solid-state NMR signals by the quadrupolar interaction often leads to poor sensitivity and low resolution. In this work we present experimental and theoretical investigations of magic angle spinning (MAS) 1H{X} double-echo resonance-echo saturation-pulse double-resonance (DE-RESPDOR) and Y{X} J-resolved solid-state NMR experiments for the indirect detection of spin 3/2 quadrupolar nuclei (X = spin 3/2 nuclei, Y = spin 1/2 nuclei). In these experiments, the spectrum of the quadrupolar nucleus is reconstructed by plotting the observed dephasing of the detected spin as a function of the transmitter offset of the indirectly detected spin. Numerical simulations were used to investigate the achievable levels of dephasing and to predict the lineshapes of indirectly detected NMR spectra of the quadrupolar nucleus. We demonstrate 1H, 31P and 207Pb detection of 35Cl, 81Br, and 63Cu (I = 3/2) nuclei in trans-Cl2Pt(NH3)2 (transplatin), (CH3NH3)PbCl3 (methylammonium lead chloride, MAPbCl3), (CH3NH3)PbBr3 (methylammonium lead bromide, MAPbBr3) and CH3C(CH2PPh2)3CuI (1,1,1-tris(diphenylphosphinomethyl)ethane copper(I) iodide, triphosCuI), respectively. In all of these experiments, we were able to detect megahertz wide central transition or satellite transition powder patterns. Significant time savings and gains in sensitivity were attained in several test cases. Additionally, the indirect detection experiments provide valuable structural information because they confirm the presence of dipolar or scalar couplings between the detected nucleus and the quadrupolar nucleus of interest. Finally, numerical simulations suggest these methods are also potentially applicable to abundant spin 5/2 and spin 7/2 quadrupolar nuclei.
Collapse
Affiliation(s)
- Sujeewa N S Lamahewage
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Benjamin A Atterberry
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Rick W Dorn
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Eunbyeol Gi
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Maxwell R Kimball
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Janet Blümel
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Javier Vela
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Aaron J Rossini
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| |
Collapse
|
4
|
Kimball JJ, Altenhof AR, Jaroszewicz MJ, Schurko RW. Broadband Cross-Polarization to Half-Integer Quadrupolar Nuclei: Wideline Static NMR Spectroscopy. J Phys Chem A 2023; 127:9621-9634. [PMID: 37922436 DOI: 10.1021/acs.jpca.3c05447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Cross-polarization (CP) is a technique commonly used for the signal enhancement of NMR spectra; however, applications to quadrupolar nuclei have heretofore been limited due to a number of problems, including poor spin-locking efficiency, inconvenient relaxation times, and reduced CP efficiencies over broad spectral bandwidths─this is unfortunate, since they constitute 73% of NMR-active nuclei in the periodic table. The Broadband Adiabatic Inversion CP (BRAIN-CP) pulse sequence has proven useful for the signal enhancement of wideline and ultra-wideline (i.e., 250 kHz to several MHz in breadth) powder patterns arising from stationary samples; however, a comprehensive investigation of its application to half-integer quadrupolar nuclei (HIQN) is currently lacking. Herein, we present theoretical and experimental considerations for applying BRAIN-CP to acquire central-transition (CT, +1/2 ↔ -1/2) powder patterns of HIQN. Consideration is given to parameters crucial to the success of the experiment, such as the Hartmann-Hahn (HH) matching conditions and the phase modulation of the contact pulse. Modifications to the BRAIN-CP sequence such as flip-back (FB) pulses and ramped contact pulses applied to the 1H spins are used for the reduction of experimental times and increased CP bandwidth capabilities, respectively. Spectra for a series of quadrupolar nuclei with broad CT powder patterns, including 35Cl (S = 3/2), 55Mn (S = 5/2), 59Co (S = 7/2), and 93Nb (S = 9/2), are acquired via direct excitation (CPMG and WCPMG) and indirect excitation (CP/CPMG and BRAIN-CP) methods. We demonstrate that proper implementation of the sequence can enable 1H-S broadband CP over a bandwidth of 1 MHz, which to the best of our knowledge is the largest CP bandwidth reported to date. Finally, we establish the basic principles necessary for simplified optimization and execution of the BRAIN-CP pulse sequence for a wide range of HIQNs.
Collapse
Affiliation(s)
- James J Kimball
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Michael J Jaroszewicz
- Department of Chemical & Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
5
|
Lucier BEG, Terskikh VV, Guo J, Bourque JL, McOnie SL, Ripmeester JA, Huang Y, Baines KM. Chlorine-35 Solid-State Nuclear Magnetic Resonance Spectroscopy as an Indirect Probe of the Oxidation Number of Tin in Tin Chlorides. Inorg Chem 2020; 59:13651-13670. [PMID: 32883071 DOI: 10.1021/acs.inorgchem.0c02025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrawideline 35Cl solid-state nuclear magnetic resonance (SSNMR) spectra of a series of 12 tin chlorides were recorded. The magnitude of the 35Cl quadrupolar coupling constant (CQ) was shown to consistently indicate the chemical state (oxidation number) of the bound Sn center. The chemical state of the Sn center was independently verified by tin Mössbauer spectroscopy. CQ(35Cl) values of >30 MHz correspond to Sn(IV), while CQ(35Cl) readings of <30 MHz indicate that Sn(II) is present. Tin-119 SSNMR experiments would seem to be the most direct and effective route to interrogating tin in these systems, yet we show that ambiguous results can emerge from this method, which may lead to an incorrect interpretation of the Sn oxidation number. The accumulated 35Cl NMR data are used as a guide to assign the Sn oxidation number in the mixed-valent metal complex Ph3PPdImSnCl2. The synthesis and crystal structure of the related Ph3PPtImSnCl2 are reported, and 195Pt and 35Cl SSNMR experiments were also used to investigate its Pt-Sn bonding. Plane-wave DFT calculations of 35Cl, 119Sn, and 195Pt NMR parameters are used to model and interpret experimental data, supported by computed 119Sn and 195Pt chemical shift tensor orientations. Given the ubiquity of directly bound Cl centers in organometallic and inorganic systems, there is tremendous potential for widespread usage of 35Cl SSNMR parameters to provide a reliable indication of the chemical state in metal chlorides.
Collapse
Affiliation(s)
- Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Victor V Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jiacheng Guo
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jeremy L Bourque
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sarah L McOnie
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - John A Ripmeester
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kim M Baines
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
6
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
7
|
Bryce DL. NMR crystallography: structure and properties of materials from solid-state nuclear magnetic resonance observables. IUCRJ 2017; 4:350-359. [PMID: 28875022 PMCID: PMC5571798 DOI: 10.1107/s2052252517006042] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/21/2017] [Indexed: 05/20/2023]
Abstract
This topical review provides a brief overview of recent developments in NMR crystallography and related NMR approaches to studying the properties of molecular and ionic solids. Areas of complementarity with diffraction-based methods are underscored. These include the study of disordered systems, of dynamic systems, and other selected examples where NMR can provide unique insights. Highlights from the literature as well as recent work from my own group are discussed.
Collapse
Affiliation(s)
- David L. Bryce
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|