1
|
Kulczyk S, Kowalczyk A, Cyniak JS, Koszytkowska-Stawińska M, Nowicka AM, Kasprzak A. Click Chemistry Derived Hexa-ferrocenylated 1,3,5-Triphenylbenzene for the Detection of Divalent Transition Metal Cations. ACS OMEGA 2024; 9:38658-38667. [PMID: 39310204 PMCID: PMC11411552 DOI: 10.1021/acsomega.4c04300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024]
Abstract
The 1,3-dipolar cycloaddition reaction (click chemistry approach) was employed to create a hexa-ferrocenylated 1,3,5-triphenylbenzene derivative. Leveraging the presence of metal-chelating sites associated with 1,2,3-triazole moieties and 1,4-dinitrogen systems (ethylenediamine-like), as well as tridentate chelating sites (1,4,7-trinitrogen, diethylene triamine-like) systems, the application of this molecule as a chemosensor for divalent transition metal cations was investigated. The interactions were probed voltammetrically and spectrofluorimetrically against seven selected cations: iron(II) (Fe2+), cobalt(II) (Co2+), nickel(II) (Ni2+), copper(II) (Cu2+), zinc(II) (Zn2+), cadmium(II) (Cd2+), and manganese(II) (Mn2+). Electrochemical assays revealed good detection properties, with very low limits of detection (LOD), for Co2+, Cu2+, and Cd2+ in aqueous solution (0.03-0.09 μM). Emission spectroscopy experiments demonstrated that the title compound exhibited versatile detection properties in solution, specifically turn-off fluorescence behavior upon the addition of each tested transition metal cation. The systems were characterized by satisfactory Stern-Volmer constant values (105-106 M-1) and low LOD, especially for Zn2+ and Co2+ (at the nanomolar concentration level).
Collapse
Affiliation(s)
- Stanisław Kulczyk
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | - Agata Kowalczyk
- Faculty
of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland
| | - Jakub S. Cyniak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | | | - Anna M. Nowicka
- Faculty
of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland
| | - Artur Kasprzak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| |
Collapse
|
2
|
An Insight into the Polymerization Process of the Selected Carbazole Derivatives - Why does It not always Lead to a Polymer Formation? Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Design and synthesis of C3-symmetric molecules containing oxepine and benzofuran moieties via Metathesis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Fluorescent Calix[4]arene-Carbazole-Containing Polymers as Sensors for Nitroaromatic Explosives. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two highly fluorescent calix[4]arene-containing phenylene-alt-ethynylene-carbazolylene polymers (Calix-PPE-CBZs) were used in the detection of explosives from the nitroaromatic compounds (NACs) family, in solution and in vapour phases. Both fluorophores exhibit high sensitivity and selectivity towards NACs detection. The quenching efficiencies in solution, assessed through static Stern-Volmer constants (KSV), follow the order picric acid (PA) >> 2,4,6-trinitrotoluene (TNT) > 2,4-dinitrotoluene > (2,4-DNT) > nitrobenzene (NB). These correlate very well with the NACs electron affinities, as evaluated from their lowest unoccupied molecular orbitals (LUMOs) energies, indicating a photo-induced electron transfer as the dominant mechanism in fluorescence quenching. Moreover, and most interesting, detection of TNT, 2,4-DNT and NB vapours via thin-films of Calix-PPE-CBZs revealed a remarkably sensitive response to these analytes, comparable to state-of-the-art chemosensors. The study also analyses and compares the current results to previous disclosed data on the detection of NACs by several calix[4]arene-based conjugated polymers and non-polymeric calix[4]arenes-carbazole conjugates, overall highlighting the superior role of calixarene and carbazole structural motifs in NACs’ detection performance. Density functional theory (DFT) calculations performed on polymer models were used to support some of the experimental findings.
Collapse
|
5
|
Sun Y, Li T. Fabrication and Application of Graphene Supported Diimine‐Palladium Complex Catalyst for Organic Synthesis. ChemistrySelect 2020. [DOI: 10.1002/slct.201904488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yunlong Sun
- School of PharmacyGuangdong Pharmaceutical University School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510008 China
| | - Tian Li
- School of Chemistry and Chemical EngineeringGuangdong Pharmaceutical University School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528458 China
| |
Collapse
|
6
|
Kotha S, Meshram M, Panguluri NR, Shah VR, Todeti S, Shirbhate ME. Synthetic Approaches to Star-Shaped Molecules with 1,3,5-Trisubstituted Aromatic Cores. Chem Asian J 2019; 14:1356-1403. [PMID: 30762307 DOI: 10.1002/asia.201801912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/12/2019] [Indexed: 01/06/2023]
Abstract
Herein, we summarize the synthetic approaches that have been developed for the synthesis of star-shaped molecules. Typically, to design such highly functionalized molecules, simple building blocks are first assembled through trimerization reactions, starting from commercially available starting materials. Then, these building blocks are synthetically manipulated to generate extended star-shaped molecules. We also discuss the syntheses of star-shaped molecules that contain 2,4,6-trisubstituted 1,3,5-triazine or 1,3,5-trisubstituted benzene rings as a central core and diverse substituted styrene, phenyl, and fluorene derivatives at their periphery, which endows these molecules with extended conjugation. A variety of metal-catalyzed reactions, such as Suzuki, Buchwald-Hartwig, Sonogashira, Heck, and Negishi cross-coupling reactions, as well as metathesis, have been employed to functionalize a range of star-shaped molecules. The methods described herein will be helpful for designing a wide range of intricate compounds that are highly valuable in the fields of supramolecular chemistry and materials science. Owing to space limitations, we will not cover all of the publications on this topic. Instead, we will focus on examples that were reported by our research group and other relevant recent literature. Apart from the trimerization sequence, this Minireview has been structured based on the key reactions that were used to prepare the star-shaped molecules and other higher analogues. Finally, some examples that do not fit into this classification are discussed.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Milind Meshram
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Nageswara Rao Panguluri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vrajesh R Shah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Saidulu Todeti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mukesh E Shirbhate
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
7
|
Golestanzadeh M, Naeimi H. Effect of Confined Spaces in the Catalytic Activity of 1D and 2D Heterogeneous Carbon-Based Catalysts for Synthesis of 1,3,5-Triarylbenzenes: RGO-SO3
H vs. MWCNTs-SO3
H. ChemistrySelect 2019. [DOI: 10.1002/slct.201803626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mohsen Golestanzadeh
- Department of Organic Chemistry; Faculty of Chemistry; University of Kashan, Kashan; 8731781167 Iran
- Environment Research Center; Research Institute for Primordial Prevention of Non Communicable Disease; Isfahan University of Medical Sciences, Isfahan; 8174673461 Iran
| | - Hossein Naeimi
- Department of Organic Chemistry; Faculty of Chemistry; University of Kashan, Kashan; 8731781167 Iran
| |
Collapse
|
8
|
Picric acid sensing and $$\hbox {CO}_{2}$$ CO 2 capture by a sterically encumbered azo-linked fluorescent triphenylbenzene based covalent organic polymer. J CHEM SCI 2018. [DOI: 10.1007/s12039-017-1403-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Vishnoi P, Kaleeswaran D, Murugavel R. 1,3,5-Triphenylbenzene: a versatile photoluminescent chemo-sensor platform and supramolecular building block. RSC Adv 2018; 8:17535-17550. [PMID: 35539277 PMCID: PMC9081830 DOI: 10.1039/c8ra02658k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Rich and diverse chemistry of 1,3,5-triphenylbenzene is discussed with emphasis on fluorescence based chemo-sensors, apart from a discussion on its use in building a number of supramolecular assemblies and fluorescent covalent-organic-frameworks.
Collapse
Affiliation(s)
- Pratap Vishnoi
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India-400 076
- Jawaharlal Nehru Centre for Advanced Scientific Research
| | | | - Ramaswamy Murugavel
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India-400 076
- Jawaharlal Nehru Centre for Advanced Scientific Research
| |
Collapse
|
10
|
Wagh GD, Akamanchi KG. Sulfated tungstate catalyzed synthesis of C 3 -symmetric 1,3,5-triaryl benzenes under solvent-free condition. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Gupta S, Kaleeswaran D, Nandi S, Vaidhyanathan R, Murugavel R. Bulky Isopropyl Group Loaded Tetraaryl Pyrene Based Azo-Linked Covalent Organic Polymer for Nitroaromatics Sensing and CO 2 Adsorption. ACS OMEGA 2017; 2:3572-3582. [PMID: 31457676 PMCID: PMC6641411 DOI: 10.1021/acsomega.7b00515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/30/2017] [Indexed: 05/03/2023]
Abstract
An azo-linked covalent organic polymer, Py-azo-COP, was synthesized by employing a highly blue-fluorescent pyrene derivative that is multiply substituted with bulky isopropyl groups. Py-azo-COP was investigated for its sensing and gas adsorption properties. Py-azo-COP shows selective sensing toward the electron-deficient polynitroaromatic compound picric acid among the many other competing analogs that were investigated. Apart from its chemosensing ability, Py-azo-COP (surface area 700 m2 g-1) exhibits moderate selectivity toward adsorption of CO2 and stores up to 8.5 wt % of CO2 at 1 bar and 18.2 wt % at 15.5 bar at 273 K, although this is limited due to the electron-rich -N=N- linkages being flanked by isopropyl groups. Furthermore, the presence of a large number of isopropyl groups imparts hydrophobicity to Py-azo-COP, as confirmed by the increased adsorption of toluene compared to that of water in the pores of the COP.
Collapse
Affiliation(s)
- Sandeep
K. Gupta
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Dhananjayan Kaleeswaran
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Shyamapada Nandi
- Department
of Chemistry, Indian Institute of Science
Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Ramanathan Vaidhyanathan
- Department
of Chemistry, Indian Institute of Science
Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Ramaswamy Murugavel
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|