1
|
Lenin B, Ramasubramanyan S, Vetrivel U, Chitipothu S. Virtual screening and multilevel precision-based prioritisation of natural inhibitors targeting the ATPase domain of human DNA topoisomerase II alpha. J Biomol Struct Dyn 2023; 41:15177-15195. [PMID: 36898858 DOI: 10.1080/07391102.2023.2187234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
Human DNA topoisomerase II alpha (hTopIIα) is a classic chemotherapeutic drug target. The existing hTopIIα poisons cause numerous side effects such as the development of cardiotoxicity, secondary malignancies, and multidrug resistance. The use of catalytic inhibitors targeting the ATP-binding cavity of the enzyme is considered a safer alternative due to the less deleterious mechanism of action. Hence, in this study, we carried out high throughput structure-based virtual screening of the NPASS natural product database against the ATPase domain of hTopIIα and identified the five best ligand hits. This was followed by comprehensive validation through molecular dynamics simulations, binding free energy calculation and ADMET analysis. On stringent multilevel prioritization, we identified promising natural product catalytic inhibitors that showed high binding affinity and stability within the ligand-binding cavity and may serve as ideal hits for anticancer drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Barathi Lenin
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Sharada Ramasubramanyan
- RS Mehta Jain Department of Biochemistry and Cell Biology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, Karnataka, India
| | - Srujana Chitipothu
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
- Central Research Instrumentation Facility, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Janežič M, Valjavec K, Loboda KB, Herlah B, Ogris I, Kozorog M, Podobnik M, Grdadolnik SG, Wolber G, Perdih A. Dynophore-Based Approach in Virtual Screening: A Case of Human DNA Topoisomerase IIα. Int J Mol Sci 2021; 22:ijms222413474. [PMID: 34948269 PMCID: PMC8703789 DOI: 10.3390/ijms222413474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, we utilized human DNA topoisomerase IIα as a model target to outline a dynophore-based approach to catalytic inhibitor design. Based on MD simulations of a known catalytic inhibitor and the native ATP ligand analog, AMP-PNP, we derived a joint dynophore model that supplements the static structure-based-pharmacophore information with a dynamic component. Subsequently, derived pharmacophore models were employed in a virtual screening campaign of a library of natural compounds. Experimental evaluation identified flavonoid compounds with promising topoisomerase IIα catalytic inhibition and binding studies confirmed interaction with the ATPase domain. We constructed a binding model through docking and extensively investigated it with molecular dynamics MD simulations, essential dynamics, and MM-GBSA free energy calculations, thus reconnecting the new results to the initial dynophore-based screening model. We not only demonstrate a new design strategy that incorporates a dynamic component of molecular recognition, but also highlight new derivates in the established flavonoid class of topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Matej Janežič
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Katja Valjavec
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
| | - Kaja Bergant Loboda
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Barbara Herlah
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Iza Ogris
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Mirijam Kozorog
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
| | - Marjetka Podobnik
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
| | - Simona Golič Grdadolnik
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany;
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-4760-376
| |
Collapse
|
3
|
Bergant Loboda K, Janežič M, Štampar M, Žegura B, Filipič M, Perdih A. Substituted 4,5'-Bithiazoles as Catalytic Inhibitors of Human DNA Topoisomerase IIα. J Chem Inf Model 2020; 60:3662-3678. [PMID: 32484690 PMCID: PMC7469689 DOI: 10.1021/acs.jcim.0c00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human type II topoisomerases, molecular motors that alter the DNA topology, are a major target of modern chemotherapy. Groups of catalytic inhibitors represent a new approach to overcome the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. Here, we present a class of substituted 4,5'-bithiazoles as catalytic inhibitors targeting the human DNA topoisomerase IIα. Based on a structural comparison of the ATPase domains of human and bacterial type II topoisomerase, a focused chemical library of 4,5'-bithiazoles was assembled and screened to identify compounds that better fit the topology of the human topo IIα adenosine 5'-triphosphate (ATP) binding site. Selected compounds showed inhibition of human topo IIα comparable to that of the etoposide topo II drug, revealing a new class of inhibitors targeting this molecular motor. Further investigations showed that compounds act as catalytic inhibitors via competitive ATP inhibition. We also confirmed binding to the truncated ATPase domain of topo IIα and modeled the inhibitor molecular recognition with molecular simulations and dynophore models. The compounds also displayed promising cytotoxicity against HepG2 and MCF-7 cell lines comparable to that of etoposide. In a more detailed study with the HepG2 cell line, there was no induction of DNA double-strand breaks (DSBs), and the compounds were able to reduce cell proliferation and stop the cell cycle mainly in the G1 phase. This confirms the mechanism of action of these compounds, which differs from topo II poisons also at the cellular level. Substituted 4,5'-bithiazoles appear to be a promising class for further development toward efficient and potentially safer cancer therapies exploiting the alternative topo II inhibition paradigm.
Collapse
Affiliation(s)
- Kaja Bergant Loboda
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Janežič
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
4
|
Design and synthesis of 3,5-substituted 1,2,4-oxadiazoles as catalytic inhibitors of human DNA topoisomerase IIα. Bioorg Chem 2020; 99:103828. [DOI: 10.1016/j.bioorg.2020.103828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 01/05/2023]
|
5
|
Zidar N, Secci D, Tomašič T, Mašič LP, Kikelj D, Passarella D, Argaez ANG, Hyeraci M, Dalla Via L. Synthesis, Antiproliferative Effect, and Topoisomerase II Inhibitory Activity of 3-Methyl-2-phenyl-1 H-indoles. ACS Med Chem Lett 2020; 11:691-697. [PMID: 32435372 DOI: 10.1021/acsmedchemlett.9b00557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
A series of 3-methyl-2-phenyl-1H-indoles was prepared and investigated for antiproliferative activity on three human tumor cell lines, HeLa, A2780, and MSTO-211H, and some structure-activity relationships were drawn up. The GI50 values of the most potent compounds (32 and 33) were lower than 5 μM in all tested cell lines. For the most biologically relevant derivatives, the effect on human DNA topoisomerase II relaxation activity was investigated, which highlighted the good correlation between the antiproliferative effect and topoisomerase II inhibition. The most potent derivative, 32, was shown to induce the apoptosis pathway. The obtained results highlight 3-methyl-2-phenyl-1H-indole as a promising scaffold for further optimization of compounds with potent antiproliferative and antitopoisomerase II activities.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Daniela Secci
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Aida Nelly Garcia Argaez
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| | - Mariafrancesca Hyeraci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| |
Collapse
|
6
|
Mashayekh K, Shiri P. An Overview of Recent Advances in the Applications of Click Chemistry in the Synthesis of Bioconjugates with Anticancer Activities. ChemistrySelect 2019. [DOI: 10.1002/slct.201902362] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Koroush Mashayekh
- Medicinal Plants and Drugs Research InstituteShahid Beheshti University, Tehran Iran
| | - Pezhman Shiri
- Department of ChemistryShiraz University, Shiraz Iran
| |
Collapse
|
7
|
Skok Ž, Zidar N, Kikelj D, Ilaš J. Dual Inhibitors of Human DNA Topoisomerase II and Other Cancer-Related Targets. J Med Chem 2019; 63:884-904. [DOI: 10.1021/acs.jmedchem.9b00726] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Bergant K, Janežič M, Valjavec K, Sosič I, Pajk S, Štampar M, Žegura B, Gobec S, Filipič M, Perdih A. Structure-guided optimization of 4,6-substituted-1,3,5-triazin-2(1H)-ones as catalytic inhibitors of human DNA topoisomerase IIα. Eur J Med Chem 2019; 175:330-348. [PMID: 31096154 DOI: 10.1016/j.ejmech.2019.04.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023]
Abstract
Human DNA topoisomerases represent one of the key targets of modern chemotherapy. An emerging group of catalytic inhibitors of human DNA topoisomerase IIα comprises a new paradigm directed to circumvent the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. In our previous studies, 4,6-substituted-1,3,5-triazin-2(1H)-ones were discovered as catalytic inhibitors of topo IIα. Here, we report the results of our efforts to optimize several properties of the initial chemical series that did not exhibit cytotoxicity on cancer cell lines. Using an optimized synthetic route, a focused chemical library was designed aimed at further functionalizing substituents at the position 4 of the 1,3,5-triazin-2(1H)-one scaffold to enable additional interactions with the topo IIα ATP binding site. After virtual screening, selected 36 analogues were synthesized and experimentally evaluated for human topo IIα inhibition. The optimized series displayed improved inhibition of topo IIα over the initial series and the catalytic mode of inhibition was confirmed for the selected active compounds. The optimized series also showed cytotoxicity against HepG2 and MCF-7 cell lines and did not induce double-strand breaks, thus displaying a mechanism of action that differs from the topo II poisons on the cellular level. The new series represents a new step in the development of the 4,6-substituted-1,3,5-triazin-2(1H)-one class towards novel efficient anticancer therapies utilizing the catalytic topo IIα inhibition paradigm.
Collapse
Affiliation(s)
- Kaja Bergant
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Matej Janežič
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Katja Valjavec
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Martina Štampar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Murugavel S, Ravikumar C, Jaabil G, Alagusundaram P. Synthesis, crystal structure analysis, spectral investigations (NMR, FT-IR, UV), DFT calculations, ADMET studies, molecular docking and anticancer activity of 2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-4-(2-chlorophenyl)-6-methoxypyridine – A novel potent human topoisomerase IIα inhibitor. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|