1
|
Jaspal D, Malviya A, El Allaoui B, Zari N, Bouhfid R, Kacem Qaiss AE, Bhagwat S. Emerging advances of composite membranes for seawater pre-treatment: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:408-429. [PMID: 37522442 PMCID: wst_2023_220 DOI: 10.2166/wst.2023.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
As the population continues to grow, the preservation of the world's water resources is becoming a serious challenge. The seawater desalination process is considered a sustainable option for the future. The two most common technologies used in desalination are reverse osmosis (RO) and membrane distillation (MD). However, membrane fouling caused by the accumulation of contaminants on the membrane surface is an emerging and growing problem. A pre-treatment stage is required to reach optimal efficiency during the desalination process since this stage is crucial for a successful desalination process. In this regard, the development of new material-based composite membranes has the potential to upgrade the anti-fouling features of RO membranes thereby enhancing desalination efficiency due to their high permeability, hydrophilicity, selectivity mechanical strength, thermal stability, and anti-bacterial properties. The objective of this review is to present various techniques for seawater pre-treatment. The results of the use of several membrane types and methods of modification have also been discussed. The performance of composite membranes for seawater pre-treatment is defined and the future perspectives have been highlighted.
Collapse
Affiliation(s)
- Dipika Jaspal
- Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Gram: Lavale, Tal: Mulshi, Pune, Maharashtra 412115, India E-mail:
| | - Arti Malviya
- Lakshmi Narain College of Technology, Bhopal, Madhya Pradesh 462021, India
| | - Brahim El Allaoui
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center (CNC), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco; Laboratoire de Chimie Analytique et de Bromatologie, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Morocco
| | - Nadia Zari
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center (CNC), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center (CNC), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center (CNC), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Sanjay Bhagwat
- Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Gram: Lavale, Tal: Mulshi, Pune, Maharashtra 412115, India; Department of Chemistry, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| |
Collapse
|
2
|
Pinho AC, Piedade AP. Polymeric Coatings with Antimicrobial Activity: A Short Review. Polymers (Basel) 2020; 12:polym12112469. [PMID: 33114426 PMCID: PMC7692441 DOI: 10.3390/polym12112469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
The actual situation of microorganisms resistant to antibiotics and pandemics caused by a virus makes research in the area of antimicrobial and antiviral materials and surfaces more urgent than ever. Several strategies can be pursued to attain such properties using different classes of materials. This review focuses on polymeric materials that are applied as coatings onto pre-existing components/parts mainly to inhibit microbial activity, but polymer surfaces with biocidal properties can be reported. Among the several approaches that can be done when addressing polymeric coatings, this review will be divided in two: antimicrobial activities due to the topographic cues, and one based on the chemistry of the surface. Some future perspectives on this topic will be given together with the conclusions of the literature survey.
Collapse
|